簡易檢索 / 詳目顯示

研究生: 蔡璨鴻
Tsan-Hung Tsai
論文名稱: 以微流道合成全無機含鉛鹵素鈣鈦礦量子點
Synthesis of All Inorganic Lead Halide Perovskite Quantum Dots by Micro-fluidic channel
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
吳季珍
Jih-Jen Wu
陳貞夙
Jen-Sue Chen
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 214
中文關鍵詞: 鈣鈦礦量子點微流道
外文關鍵詞: perovskite, quantum dots, micro-fluidic channel
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在室溫下進行批式法合成全無機銫鉛鹵素鈣鈦礦量子點(CsPbX3 QDs, X=Cl/Br/I)可以達到高螢光量子效率。然而,在室溫下進行全無機銫鉛鹵素鈣鈦礦量子點的批式放大製程時,其螢光量子效率會有偏低現象。因此在本次研究中,將以 微流道晶片 進行放大製程研究,以期能合成出高螢光效率的全無機銫鉛溴鈣鈦礦量子點。根據分析出來的結果可得知:利用 微流道晶片 進行放大製程所製備出的溴化銫鉛鈣鈦礦量子點的螢光量子效率高於批式放大反應器所製備出的溴化銫鉛鈣鈦礦量子點。此外,將陰離子置換反應套用在 微流道晶片 也可製備出高螢光效率的溴碘化銫鉛鈣鈦礦紅光量子點。在本次研究中,透過 微流道晶片進行放大製程所製備出的溴化銫鉛鈣鈦礦量子點與溴碘化銫鉛鈣鈦礦量子點的螢光量子效率分別為 87%與 64%。然而,在篩選粒徑大小的過程中伴隨著產物流失情形發生,因此透過水處理優化程序將原先因粒徑過大而被去除的 CsPbX3晶體進行回收,使其生產效率提升。因此透過水處理優化程序作為提升產率的方法。此外,為了改善銫鉛鹵素鈣鈦礦量子點的穩定性,在溴化銫鉛鈣鈦礦量子點與溴碘化銫鉛鈣鈦礦量子點外圍添加二氧化矽無機層,作為阻隔外界水氣及氧氣的阻擋層,進而提升銫鉛鹵素鈣鈦礦量子點粉體的穩定性。之後,再將二氧化矽包覆溴化銫鉛鹵素鈣鈦礦量子點粉體的穩定性。之後,再將二氧化矽包覆溴化銫鉛鈣鈦礦鈣鈦礦量子點粉體與二氧化矽包覆溴碘化銫鉛鈣鈦礦量子點粉體進行混量子點粉體與二氧化矽包覆溴碘化銫鉛鈣鈦礦量子點粉體進行混合於合於聚甲基丙烯酸甲酯聚甲基丙烯酸甲酯並製成為光轉換層。將此光轉換層置在激發波段並製成為光轉換層。將此光轉換層置在激發波段為為460奈米奈米的氮化銦鎵藍光二極體晶片上,可的氮化銦鎵藍光二極體晶片上,可獲得接近自然白光。當驅獲得接近自然白光。當驅動電壓施加動電壓施加2.5 V時,其發光效率為時,其發光效率為39 lmW--1,輝度為,輝度為2973 cdm--2,色溫,色溫為為4800 K。。其白光件的再現性佳其白光件的再現性佳,,且色域可達且色域可達119% NTSC標準標準。


    Recently, all inorganic cesium lead halide (CsPbX3, X=Cl, Br, I) quantum dots (QDs) could achieve high photoluminescence quantum yield (PL QY), which were synthesized by batch type process in room temperature. However, PL QY of inorganic cesium lead halide quantum dots synthesized by massive batch type process is low. Therefore, micro fluidic channel chip design was employed for massive production of high PL QY CsPbBr3 QDs. According to analysis results, we could know that PL QY of CsPbBr3 QDs synthesized via micro fluidic channel chip is higher than that via massive batch type process. In addition, red emission CsPb(Br/I)3 QDs with high PL QY could also be prepared by micro fluidic channel chips with anion exchange process. In this study, PL QY of CsPbBr3 QDs and CsPb(Br/I)3 QDs synthesized by micro fluidic channel chips could achieve 85% and 64%, respectively. However, the production rate for CsPbX3 QDs synthesized by micro fluidic channel chip is low. Therefore, water post treatment was employed to improve the production rate for CsPbX3 QDs. In addition, the improvement of CsPbX3 QDs stability was also studied. Inorganic silica (SiO2) shells were employed to enclose on the outer surfaces of CsPbX3 QDs as barrier layer for avoiding the influence of humidity and oxygen. In the next, CsPbBr3/SiO2 and [CsPb(Br/I)3]/SiO2 powders were blended together to mix with poly (methyl methacrylate) (PMMA) as light convert layer. Combing the light convert layer with blue indium gallium nitride (InGaN) light emitting diode (LED) chip with 460 nm, a white light could be obtained. The characteristics of white light emission were luminous efficiency=39 lmW 1, luminance=2973 cdm 2, color temperature=4800 K under 2.5 V. The reproducibility of white light emitting is good and the color gamut could achieve 119% NTSC standard.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XXV 第一章、 緒論 1 1-1 量子點簡介 1 1-2 研究動機與目的 3 第二章、 理論基礎與文獻回顧 4 2-1 半導體與鈣鈦礦材料 4 2-1-1 半導體概念與能帶圖 4 2-1-2 鈣鈦礦材料由來 7 2-2 鈣鈦礦量子點材料 10 2-2-1 鈣鈦礦量子點合成及特性 10 2-2-2 CsPbX3量子點進行陰陽離子置換 22 2-2-3 探討 CsPbX3的形貌與表面配體及溫度之間關係 28 2-2-4 提升鈣鈦礦量子點對環境的穩定性 32 2-2-5 優化鈣鈦礦量子點 39 2-3 微流道晶片合成量子點 42 2-3-1 微流道簡介 42 2-3-2 微流道晶片設計與製作 44 2-3-3 量子點合成應用於微流道晶片 47 2-4 鈣鈦礦量子點應用 51 2-4-1 白光二極體探討 51 2-4-2 發光二極體探討 54 第三章、 實驗設計 58 3-1 實驗流程圖 58 3-2 實驗藥品 59 3-3 實驗分析儀器與原理 62 3-4 實驗步驟 68 3-4-1 微流道晶片合成CsPbBr3量子點 68 3-4-2 微流道晶片合成CsPb(Br/I)3量子點 70 3-4-3 批式反應器合成CsPbBr3 72 3-4-4 陰離子置換 74 3-4-5 以SiO2包覆CsPbX3量子點材料 75 3-4-6 CsPbX3(X=Br,I)沉澱物進行水處理優化製程 76 3-4-7 利用CsPbX3/SiO2(X=Br,I)進行白光元件製作 76 3-4-8 CsPbX3量子點螢光量子效率測量 77 第四章、 結果與討論 78 4-1 微流道晶片合成CsPbX3 (X=Br, I)量子點參數探討與材料性質分析 78 4-1-1 不同前驅物流速對CsPbBr3量子點製備之探討 78 4-1-2 微流道圖案設計對CsPbBr3量子點製備之影響 85 4-1-3 以微流道晶片進行CsPbBr3量子點放大製程之參數分析 94 4-1-4 以微流道晶片進行CsPb(Br/I)3量子點製備之性質與穩定性分析 107 4-2 微流道晶片製備CsPbX3量子點之優化製程探討 120 4-2-1 以水分子後段處理進行 CsPbBr3量子點優化製程 120 4-2-2 以水分子後段處理進行 CsPb(Br/I)3量子點優化製程 133 4-3 以TMOS進行水解反應製備CsPbX3/SiO2(X=Br,I) 143 4-3-1以SiO2包覆CsPbBr3量子點之粉體製備參數探討 143 4-3-2以SiO2包覆CsPb(Br/I)3量子點之粉體製備參數探討 154 4-4 CsPbX3量子點應用於白光元件之探討 165 4-4-1以CsPbX3/SiO2製備白光發光元件 165 第五章、結論 169 第六章、參考文獻 170

    1. M. A. Hines and P. Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. The Journal of Physical Chemistry 100 (2), 468-471 (1996).
    2. M. Protiere and P. Reiss. Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Research Letters 1 (1), 62 (2006).
    3. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson and H. Weller. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core− Shell− Shell Nanocrystals. The Journal of Physical Chemistry B 108 (49), 18826-18831 (2004).
    4. S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan and L. Li. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene. Journal of the American Chemical Society 138 (18), 5749-5752 (2016).
    5. M. Kulbak, D. Cahen and G. Hodes. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The Journal of Physical Chemistry Letters 6 (13), 2452-2456 (2015).
    6. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes and D. Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The Journal of Physical Chemistry Letters 7 (1), 167-172 (2015).
    7. X. Liang, R. W. Baker, K. Wu, W. Deng, D. Ferdani, P. S. Kubiak, F. Marken, L. Torrente-Murciano and P. J. Cameron. Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor. Reaction Chemistry & Engineering 3 (5), 640-644 (2018).
    8. S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices. (Prentice Hall New Jersey, 2001).
    9. T. Kuphaldt, Lessons In Electric Circuits, Volume III–Semiconductors. (2009).
    10. M. Rioult. (2015): Hematite-based epitaxial thin films as photoanodes for solar water splitting., Ecole polytechnique, Palaiseau.
    11. G. C. Papavassiliou. Synthetic three-and lower-dimensional semiconductors based on inorganic units. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 286 (1), 231-238 (1996).
    12. K. Yamada, H. Kawaguchi, T. Matsui, T. Okuda and S. Ichiba. Structural Phase Transition and Electrical Conductivity of the Perovskite CH3NH3Sn1-xPbxBr3 and CsSnBr3. Bulletin of the Chemical Society of Japan 63 (9), 2521-2525 (1990).
    13. M. H. Suhail and A. M. Jafar. Fabrication and characterization of organolead halide peroviske solar cell. Renewable Energy 98 (2016), 42709-42713 (2016).
    14. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    15. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum and J. E. Moser. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2, 591 (2012).
    16. H. Kim, K.-G. Lim and T.-W. Lee. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science 9 (1), 12-30 (2016).
    17. M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi, K. Wojciechowski, H. J. Snaith and D. Schmeisser. Room‐temperature atomic layer deposition of Al2O3: impact on efficiency, stability and surface properties in perovskite solar cells. ChemSusChem 9 (24), 3401-3406 (2016).
    18. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim and J. H. Noh. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356 (6345), 1376-1379 (2017).
    19. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang. Interface engineering of highly efficient perovskite solar cells. Science 345 (6196), 542-546 (2014).
    20. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang and M. G. Kanatzidis. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 8 (6), 489 (2014).
    21. F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. Chang and M. G. Kanatzidis. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society 137 (35), 11445-11452 (2015).
    22. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak and M. B. Johnston. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 7 (9), 3061-3068 (2014).
    23. T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi and T. Negami. Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 degrees C/85% 1000 h stability. Advanced Materials, e1806823 (2019).
    24. H. L. Wells. Über die Cäsium‐und Kalium‐Bleihalogenide. Zeitschrift für anorganische Chemie 3 (1), 195-210 (1893).
    25. C. K. Moller. A phase transition in cæsium plumbochloride. Nature 180 (4593), 981-982 (1957).
    26. C. K. Moller. Crystal structure and photoconductivity of caesium plumbohalides. Nature 182 (4647), 1436 (1958).
    27. K. Yamada, T. Hayashi, T. Umehara, T. Okuda and S. Ichiba. 81Br NQR and 119Sn Mössbauer spectra for SnBr3− anions. Bulletin of the Chemical Society of Japan 60 (12), 4203-4207 (1987).
    28. K. Yamada, T. Matsui, T. Tsuritani, T. Okuda and S. Ichiba. 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M= K, NH4, Rb, Cs, and CH3NH3). Zeitschrift für Naturforschung A 45 (3-4), 307-312 (1990).
    29. K. Yamada, T. Tsuritani, T. Okuda and S. Ichiba. Structure and Bonding of Two Modifications of CsSnI3 by Means of Powder X-Ray Diffraction, 127I NQR, and DTA. Chemistry Letters 18 (8), 1325-1328 (1989).
    30. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15 (6), 3692-3696 (2015).
    31. L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H. J. Bolink, R. E. Galian and J. Pérez-Prieto. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society 136 (3), 850-853 (2014).
    32. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9 (4), 4533-4542 (2015).
    33. F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong and H. Zhong. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chemistry of Materials 29 (8), 3793-3799 (2017).
    34. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields. Chemical Communications 52 (45), 7265-7268 (2016).
    35. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng. CsPbX3Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Advanced Functional Materials 26 (15), 2435-2445 (2016).
    36. J. C. de Mello, H. F. Wittmann and R. H. Friend. An improved experimental determination of external photoluminescence quantum efficiency. Advanced Materials 9 (3), 230-232 (1997).
    37. A. M. Brouwer. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 83 (12), 2213-2228 (2011).
    38. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller and U. Resch-Genger. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Analytical Chemistry 81 (15), 6285-6294 (2009).
    39. K. Drexhage. Fluorescence efficiency of laser dyes. Journal of research of the National Bureau of Standard 76 (3), 206-267 (1977).
    40. M. Galanin, A. Kutyonkov, V. Smorchkov, Y. P. Timofeev and Z. Chizhikova. Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Optics and Spectroscopy 53, 405-409 (1982).
    41. G. Reynolds and K. H. Drexhage. New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Optics Communications 13 (3), 222-225 (1975).
    42. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angewandte Chemie International Edition 127 (51), 15644-15648 (2015).
    43. C. de Mello Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh and A. Meijerink. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. The Journal of Physical Chemistry B 107 (2), 489-496 (2003).
    44. L.-y. Huang and W. R. Lambrecht. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Physical Review B 88 (16), 165203 (2013).
    45. R. A. Jishi, O. B. Ta and A. A. Sharif. Modeling of lead halide perovskites for photovoltaic applications. The Journal of Physical Chemistry C 118 (49), 28344-28349 (2014).
    46. C. Yu, Z. Chen, J. J. Wang, W. Pfenninger, N. Vockic, J. T. Kenney and K. Shum. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. Journal of Applied Physics 110 (6), 063526 (2011).
    47. C. Bi, S. Wang, W. Wen, J. Yuan, G. Cao and J. Tian. Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots with High Photoluminescence Quantum Yield. The Journal of Physical Chemistry C 122 (9), 5151-5160 (2018).
    48. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    49. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Letters 15 (8), 5635-5640 (2015).
    50. A. Haque, V. K. Ravi, G. S. Shanker, I. Sarkar, A. Nag and P. K. Santra. Internal Heterostructure of Anion-Exchanged Cesium Lead Halide Nanocubes. The Journal of Physical Chemistry C 122 (25), 13399-13406 (2017).
    51. M. Li, X. Zhang, S. Lu and P. Yang. Phase transformation, morphology control, and luminescence evolution of cesium lead halide nanocrystals in the anion exchange process. RSC Advances 6 (105), 103382-103389 (2016).
    52. D. H. Son, S. M. Hughes, Y. Yin and A. P. Alivisatos. Cation exchange reactions in ionic nanocrystals. Science 306 (5698), 1009-1012 (2004).
    53. K. Hills-Kimball, Y. Nagaoka, C. Cao, E. Chaykovsky and O. Chen. Synthesis of formamidinium lead halide perovskite nanocrystals through solid–liquid–solid cation exchange. Journal of Materials Chemistry C 5 (23), 5680-5684 (2017).
    54. L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko and M. I. Bodnarchuk. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11 (3), 3119-3134 (2017).
    55. D. Yu, B. Cai, F. Cao, X. Li, X. Liu, Y. Zhu, J. Ji, Y. Gu and H. Zeng. Cation Exchange‐Induced Dimensionality Construction: From Monolayered to Multilayered 2D Single Crystal Halide Perovskites. Advanced Materials Interfaces 4 (19), 1700441 (2017).
    56. W. Van der Stam, J. J. Geuchies, T. Altantzis, K. H. Van Den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–x Mx Br3 Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society 139 (11), 4087-4097 (2017).
    57. F. Li, Z. Xia, Y. Gong, L. Gu and Q. Liu. Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation–anion co-substitution exchange reaction. Journal of Materials Chemistry C 5 (36), 9281-9287 (2017).
    58. D. Gao, B. Qiao, Z. Xu, D. Song, P. Song, Z. Liang, Z. Shen, J. Cao, J. Zhang and S. Zhao. Postsynthetic, reversible cation exchange between Pb2+ and Mn2+ in cesium lead chloride perovskite nanocrystals. The Journal of Physical Chemistry C 121 (37), 20387-20395 (2017).
    59. D. Battaglia and X. Peng. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Letters 2 (9), 1027-1030 (2002).
    60. W. W. Yu and X. Peng. Formation of high‐quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie International Edition 41 (13), 2368-2371 (2002).
    61. C. R. Bealing, W. J. Baumgardner, J. J. Choi, T. Hanrath and R. G. Hennig. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 6 (3), 2118-2127 (2012).
    62. L. Manna, E. C. Scher and A. P. Alivisatos. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society 122 (51), 12700-12706 (2000).
    63. Y. Yin and A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437 (7059), 664 (2004).
    64. W. W. Yu, Y. A. Wang and X. Peng. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chemistry of Materials 15 (22), 4300-4308 (2003).
    65. S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. Merz, P. Petroff and J. Bowers. Temperature effects on the radiative recombination in self-assembled quantum dots. Surface Science 361, 778-782 (1996).
    66. Z. Li and X. Peng. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. Journal of the American Chemical Society 133 (17), 6578-6586 (2011).
    67. S. Sourisseau, N. Louvain, W. Bi, N. Mercier, D. Rondeau, F. Boucher, J.-Y. Buzaré and C. Legein. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic− inorganic interface. Chemistry of Materials 19 (3), 600-607 (2007).
    68. E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong and F. Fan. Amine‐free synthesis of cesium lead halide perovskite quantum dots for efficient light‐emitting diodes. Advanced Functional Materials 26 (47), 8757-8763 (2016).
    69. M. Imran, F. Di Stasio, Z. Dang, C. Canale, A. H. Khan, J. Shamsi, R. Brescia, M. Prato and L. Manna. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chemistry of Materials 28 (18), 6450-6454 (2016).
    70. J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio, R. Brescia, M. Prato and L. Manna. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society 138 (23), 7240-7243 (2016).
    71. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li and H. Zeng. Monolayer and few‐layer all‐inorganic perovskites as a new family of two‐dimensional semiconductors for printable optoelectronic devices. Advanced Materials 28 (24), 4861-4869 (2016).
    72. D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong and M. Lai. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. Journal of the American Chemical Society 138 (23), 7236-7239 (2016).
    73. S. Seth and A. Samanta. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Scientific Reports 6, 37693 (2016).
    74. A. Kostopoulou, M. Sygletou, K. Brintakis, A. Lappas and E. Stratakis. Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires. Nanoscale 9 (46), 18202-18207 (2017).
    75. N. C. Anderson, M. P. Hendricks, J. J. Choi and J. S. Owen. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. Journal of the American Chemical Society 135 (49), 18536-18548 (2013).
    76. J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10 (2), 2071-2081 (2016).
    77. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami and J. Liu. Highly efficient perovskite‐quantum‐dot light‐emitting diodes by surface engineering. Advanced Materials 28 (39), 8718-8725 (2016).
    78. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10 (8), 7943-7954 (2016).
    79. Y. Fujii, S. Hoshino, Y. Yamada and G. Shirane. Neutron-scattering study on phase transitions of CsPbCl3. Physical Review B 9 (10), 4549 (1974).
    80. J. Cape, R. White and R. Feigelson. EPR study of the structure of CsPbCl3. Journal of Applied Physics 40 (13), 5001-5005 (1969).
    81. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung and A. J. Freeman. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design 13 (7), 2722-2727 (2013).
    82. S. Hirotsu, J. Harada, M. Iizumi and K. Gesi. Structural phase transitions in CsPbBr3. Journal of the Physical Society of Japan 37 (5), 1393-1398 (1974).
    83. R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke and M. D. McGehee. Cesium lead halide perovskites with improved stability for tandem solar cells. The Journal of Physical Chemistry Letters 7 (5), 746-751 (2016).
    84. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A 3 (39), 19688-19695 (2015).
    85. D. Trots and S. Myagkota. High-temperature structural evolution of caesium and rubidium triiodoplumbates. Journal of Physics and Chemistry of Solids 69 (10), 2520-2526 (2008).
    86. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger and M. Grätzel. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science 9 (2), 656-662 (2016).
    87. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Letters 14 (5), 2584-2590 (2014).
    88. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang. Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science 9 (2), 323-356 (2016).
    89. T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza and H. J. Snaith. Stability of metal halide perovskite solar cells. Advanced Energy Materials 5 (20), 1500963 (2015).
    90. M. Meyns, M. Peralvarez, A. Heuer-Jungemann, W. Hertog, M. Ibanez, R. Nafria, A. Genc, J. Arbiol, M. V. Kovalenko, J. Carreras, A. Cabot and A. G. Kanaras. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Applied Materials & Interfaces 8 (30), 19579-19586 (2016).
    91. J. S. Manser, J. A. Christians and P. V. Kamat. Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews 116 (21), 12956-13008 (2016).
    92. W. Travis, E. Glover, H. Bronstein, D. Scanlon and R. Palgrave. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 7 (7), 4548-4556 (2016).
    93. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances 5 (2), eaav0693 (2019).
    94. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress and A. Hagfeldt. Promises and challenges of perovskite solar cells. Science 358 (6364), 739-744 (2017).
    95. A. Pan, J. Wang, M. J. Jurow, M. Jia, Y. Liu, Y. Wu, Y. Zhang, L. He and Y. Liu. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals. Chemistry of Materials 30 (8), 2771-2780 (2018).
    96. H. Huang, B. Chen, Z. Wang, T. F. Hung, A. S. Susha, H. Zhong and A. L. Rogach. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science 7 (9), 5699-5703 (2016).
    97. W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu and M. Zhou. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 13 (21), 1604085 (2017).
    98. Z. Hu, Z. Liu, Y. Bian, S. Li, X. Tang, J. Du, Z. Zang, M. Zhou, W. Hu and Y. Tian. Enhanced two‐photon‐pumped emission from In situ synthesized Nonblinking CsPbBr3/SiO2 Nanocrystals with Excellent Stability. Advanced Optical Materials 6 (3), 1700997 (2018).
    99. L. L. Hench and J. K. West. The sol-gel process. Chemical Reviews 90 (1), 33-72 (1990).
    100. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu. Efficient and stable white LEDs with silica‐coated inorganic perovskite quantum dots. Advanced Materials 28 (45), 10088-10094 (2016).
    101. D. Yang, X. Li and H. Zeng. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces 5 (8), 1701662 (2018).
    102. G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef and O. F. Mohammed. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Letters 3 (10), 2301-2307 (2018).
    103. Y. Liu, F. Li, Q. Liu and Z. Xia. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X= Cl, Br, I) perovskite nanocrystals. Chemistry of Materials 30 (19), 6922-6929 (2018).
    104. V. Chokkalingam, B. Weidenhof, M. Krämer, W. F. Maier, S. Herminghaus and R. Seemann. Optimized droplet-based microfluidics scheme for sol–gel reactions. Lab on a Chip 10 (13), 1700-1705 (2010).
    105. I. Shestopalov, J. D. Tice and R. F. Ismagilov. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab on a Chip 4 (4), 316-321 (2004).
    106. A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus, H. Lüdi and H. M. Widmer. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. Journal of Chromatography A 593 (1-2), 253-258 (1992).
    107. G. V. Kaigala, R. D. Lovchik and E. Delamarche. Microfluidics in the “open space” for performing localized chemistry on biological interfaces. Angewandte Chemie International Edition 51 (45), 11224-11240 (2012).
    108. T. Pfohl, F. Mugele, R. Seemann and S. Herminghaus. Trends in microfluidics with complex fluids. ChemPhysChem 4 (12), 1291-1298 (2003).
    109. V. Chokkalingam, J. Tel, F. Wimmers, X. Liu, S. Semenov, J. Thiele, C. G. Figdor and W. T. Huck. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip 13 (24), 4740-4744 (2013).
    110. H. Becker and C. Gärtner. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis: An International Journal 21 (1), 12-26 (2000).
    111. Z. H. Fan and D. J. Harrison. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Analytical Chemistry 66 (1), 177-184 (1994).
    112. S. C. Jacobson, R. Hergenroder, A. W. J. Moore and J. M. Ramsey. Precolumn reactions with electrophoretic analysis integrated on a microchip. Analytical Chemistry 66 (23), 4127-4132 (1994).
    113. L. B. Koutny, D. Schmalzing, T. A. Taylor and M. Fuchs. Microchip electrophoretic immunoassay for serum cortisol. Analytical Chemistry 68 (1), 18-22 (1996).
    114. A. T. Woolley and R. A. Mathies. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. proceedings of the National Academy of Sciences 91 (24), 11348-11352 (1994).
    115. V. Dolník, S. Liu and S. Jovanovich. Capillary electrophoresis on microchip. Electrophoresis 21 (1), 41-54 (2000).
    116. H. Niino and A. Yabe. Surface modification and metallization of fluorocarbon polymers by excimer laser processing. Applied Physics Letters 63 (25), 3527-3529 (1993).
    117. L. G. Reyna and J. R. Soběhart. Laser ablation of multilayer polymer films. Journal of Applied Physics 76 (7), 4367-4371 (1994).
    118. M. A. Roberts, J. S. Rossier, P. Bercier and H. Girault. UV laser machined polymer substrates for the development of microdiagnostic systems. Analytical Chemistry 69 (11), 2035-2042 (1997).
    119. L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen and W. A. MacCrehan. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 69 (23), 4783-4789 (1997).
    120. J. Xu, L. Locascio, M. Gaitan and C. S. Lee. Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry 72 (8), 1930-1933 (2000).
    121. S. Marre and K. F. Jensen. Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews 39 (3), 1183-1202 (2010).
    122. H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara and P. Mulvaney. Preparation of CdSe nanocrystals in a micro-flow-reactor. Chemical Communications (23), 2844-2845 (2002).
    123. H. Wang, X. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu and H. Maeda. Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chemical Communications (1), 48-49 (2004).
    124. J. Baek, P. M. Allen, M. G. Bawendi and K. F. Jensen. Investigation of indium phosphide nanocrystal synthesis using a high‐temperature and high‐pressure continuous flow microreactor. Angewandte Chemie International Edition 50 (3), 627-630 (2011).
    125. S. Marre, J. Park, J. Rempel, J. Guan, M. G. Bawendi and K. F. Jensen. Supercritical continuous‐microflow synthesis of narrow size distribution quantum dots. Advanced Materials 20 (24), 4830-4834 (2008).
    126. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello and M. V. Kovalenko. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters 16 (3), 1869-1877 (2016).
    127. S. Nakamura, M. Senoh and T. Mukai. P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Japanese Journal of Applied Physics 32 (1A), L8 (1993).
    128. F. Palazon, F. Di Stasio, Q. A. Akkerman, R. Krahne, M. Prato and L. Manna. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chemistry of Materials 28 (9), 2902-2906 (2016).
    129. H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai and R. S. Liu. Mesoporous silica particles integrated with all‐inorganic CsPbBr3 perovskite quantum‐dot nanocomposites (MP‐PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition 128 (28), 8056-8061 (2016).
    130. H. Shao, X. Bai, G. Pan, H. Cui, J. Zhu, Y. Zhai, J. Liu, B. Dong, L. Xu and H. Song. Highly efficient and stable blue-emitting CsPbBr3@ SiO2 nanospheres through low temperature synthesis for nanoprinting and WLED. Nanotechnology 29 (28), 285706 (2018).
    131. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng. Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials 27 (44), 7162-7167 (2015).
    132. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan and B. Han. 50‐Fold EQE improvement up to 6.27% of solution‐processed all‐inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials 29 (5), 1603885 (2017).
    133. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. Choy and A. L. Rogach. Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices. The Journal of Physical Chemistry Letters 7 (21), 4398-4404 (2016).
    134. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng. Room‐temperature triple‐ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE‐11.6% perovskite QLEDs. Advanced Materials 30 (30), 1800764 (2018).
    135. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao and H. Zhang. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 7 (12), 11234-11241 (2013).
    136. D. Zielke, A. C. Hübler, U. Hahn, N. Brandt, M. Bartzsch, U. Fügmann, T. Fischer, J. Veres and S. Ogier. Polymer-based organic field-effect transistor using offset printed source/drain structures. Applied Physics Letters 87 (12), 123508 (2005).
    137. D. Yang, X. Li, Y. Wu, C. Wei, Z. Qin, C. Zhang, Z. Sun, Y. Li, Y. Wang and H. Zeng. surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Advanced Optical Materials, 1900276 (2019).
    138. Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang and Z. Lu. Surface passivation of mixed-halide perovskite CsPb (BrxI1− x)3 nanocrystals by selective etching for improved stability. Nanoscale 9 (22), 7391-7396 (2017).
    139. S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan and L. Li. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. Journal of the American Chemical Society 138 (18), 5749-5752 (2016).
    140. J. Li, X. Yuan, P. Jing, J. Li, M. Wei, J. Hua, J. Zhao and L. Tian. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances 6 (82), 78311-78316 (2016).

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 2024/08/13 (校外網路)
    全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE