簡易檢索 / 詳目顯示

研究生: 陳煥治
Huan-Chin Chen
論文名稱: 大型LED顯示器電力系統之自動化規劃開發研究
Study on Automation Planning Development of LED Display Power Systems
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 郭鴻飛
Hung-Fei Kuo
楊振雄
Chen-Hsiung Yang
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 121
中文關鍵詞: LED顯示看板電力系統圖型繪製位置定位
外文關鍵詞: LED billboards, power systems, graphic drawing, location targeting
相關次數: 點閱:234下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般大型發光二極體(LED)顯示器的安裝建立可分成三大階段,規劃、施工及運行。在規劃階段會需要先產出設計圖面讓設計師可以跟相關技師溝通,讓使用者或是審核單位能了解設計細節。在施工階段需要繪製施工圖讓營建單位照圖施作。運行階段需要製作測試圖檔方便維護人員觀察運作狀況。各階段都需要專業人員使用不同工具以應付使用者需求。
    在本研究中針對電力系統部分,將三個階段所需要的圖面整合成一個程式,建立好需要的規格,輸入少量數據就可以獲得規劃階段所需的電力單線圖、施工階段的電力佈線圖及運行階段的位置定位圖。本研究以此為目標,利用Python運算相關參數,進而產生繪圖文檔讓ImageMagick繪製所設計的圖面。輸入介面使用Tkinter設計人機介面,讓使用者輸入相關參數。利用這個程式,可以快速產生相關圖檔,幫助使用者節省運算及繪製圖面的時間,加快工程討論及設計文件產出。
    本研究製作規劃階段的電力單線圖時,定義一個迴路使用耐流30 A的5.5 mm²電纜,同時兼顧規格統一及施工難易的平衡。使用者輸入LED箱體的長、寬數量,程式就可進一步計算出總耗電、總開關大小、總電纜耐流及尺寸、接地線尺寸、總迴路數及總顯示器尺寸。使用者可以隨時快速調整箱體的長、寬數量,找出適合的尺寸規格。
    以此計算結果為基準,繪製出規劃階段的電力單線圖。因為最大耐流的關係,一個迴路最多並聯6個LED箱體,依使用者輸入的LED箱體數量,分配出最適合的組態,進而規劃出施工階段的電力佈線圖。運行階段的位置定位圖重點在於提高使用者的辨識方便度,設計每5個LED箱體就做一個標示,目的是要讓使用者在大面積的範圍內,快速定位任一處異常的座標位置。


    The installation and establishment of general large splicing displays can be divided into three major stages: planning, construction and operation. In the planning stage, it is necessary to produce the design surface first so that designers can communicate with relevant technicians. This process allows users or review units to understand design details. In the construction stage, construction drawings need to be drawn for construction units to implement according to the drawings. During the operation phase, test chart files need to be made to facilitate maintenance personnel to observe the operation status. Each stage requires professionals to use different tools in order to meet user needs.
    In this study, for the power system part, the drawings required in the three stages are integrated into a single computer program. By establishing required specifications and inputting a small amount of data, the program can generate the power single-line diagrams required in the planning stage, the power wiring diagrams in the construction stage, and the location positioning diagrams in the operation stage. The goal of this is to develop the program, which can facilitate the power planning automation of large-scale LED displays, where the software Python is used to calculate related parameters in order to generate a drawing document, which is used in the software ImageMagick to draw the designed surfaces. The input interface is obtained by using the software Tkinter to design a human-machine interface, which allows users to enter relevant parameters. By using this program, users can quickly generate related graphics files, and the program helps users to save calculation and drawing time, which can speed up engineering discussions and design document outputs.
    When this study produces the power single-line diagram at the planning stage, one defines an electric circuit using 5.5-mm² cable with 30-A current resistance. At the same time, both of the uniform specifications and the balance of difficulty in construction are taken into account. User inputs the lengths and widths of the LED cabinets, and then the program can further calculate the total power consumptions, total switch sizes, total cable current resistances and sizes, ground wire sizes, total circuit numbers, and total display sizes. Users can quickly adjust the lengths and widths of the boxes at any time to find out the suitable sizes and specifications.
    Based on this calculation results, the program draws a single-line diagram of electric power in the planning stage. Because of the maximum current resistances, a circuit can connect up to 6 LED cabinets in parallel. According to the numbers of LED cabinets input by users, the most suitable configurations are assigned, and then the power wiring diagrams are planned in the construction stage. The position location maps of the operation stage focus on improving users’ identification conveniences, where the design is made by adding a mark every 5 LED boxes. The purpose is to allow users to quickly locate any abnormal coordinate positions within large areas.

    摘 要............................i Abstract..........................ii 目 錄............................iv 圖目錄............................vi 表目錄............................viii 第一章 緒論......................1 1.1 研究背景...................1 1.2 文獻回顧...................3 1.3 研究動機...................5 1.3.1 前期的規劃設計..............6 1.3.2 中期施工建置階段............7 1.3.3 後期測試維護階段............8 1.4 研究方法....................9 1.5 研究貢獻....................10 1.6 論文架構....................10 第二章 大型LED顯示器的電力系統規劃...11 2.1 大型拼接顯示器的相關原理......11 2.1.1 LED基本介紹..................12 2.1.2 LED燈粒......................15 2.1.3 LED燈板 - Lamp...............16 2.1.4 LED箱體-Cabinet..............17 2.1.5 LED顯示器....................19 2.2 實驗相關軟體技術介紹..........23 2.2.1 Python.......................23 2.2.2 ImageMagick..................25 2.3 電力單線圖的規劃..............28 2.3.1 負載容量及分路電流............29 2.3.2 安全開關的選用................29 2.3.3 電纜線徑的選用................30 2.3.4 接地線徑的選用................33 2.4 佈纜設計的安排................34 2.5 LED顯示器異常位置辨識的方法....39 第三章 電力系統程式開發...............41 3.1 實驗設備環境..................41 3.2 實驗流程......................44 3.3 Tkinter 輸入介面..............45 3.4 Python:數據運算..............51 3.5 Python:電力單線圖............62 3.6 Python:接線示意圖............67 3.7 Python:異常位置定位圖........74 第四章 研究成果及案例討論............80 4.1 研究成果.....................80 4.1.1 電力單線圖...................80 4.1.2 接線示意圖...................81 4.1.3 異常位置定位圖...............82 4.2 實驗成果測試.................83 4.2.1 天母棒球場...................83 4.2.2 新莊棒球場...................87 4.2.3 澄清湖棒球場.................95 4.2.4 花蓮棒球場...................100 第五章 結論與未來研究方向...........105 5.1 結論........................105 5.2 未來研究方向.................106 參考文獻............................107

    [1] Hüseyin Murat, Dieter Cuypers, Herbert De Smet, “Design of new collection systems for multi LED lightengines,” Proceedings of SPIE, Vol. 6196, pp. 619604, 2006.
    [2] Noman Baloch, Cha-Seung Jun, Byung-Il Kwon, “Design and performance evaluation of a modular linear induction machine for rotating electronic Billboard,” IEEE Access, Vol. 7, pp. 127393-127401, 2019.
    [3] Wei He, Pin-Han Ho, “On achieving cyber-physical real-time snapshot acquisition in billboard/signage networks,” IEEE Internet of Things Journal, Vol. 3, No. 6, pp. 1213-1221, 2016
    [4] Zhanlin Ji, Ivan Ganchev, Máirtín O'Droma, “Performance evaluation of 'WBC over DVB-H' system,” IEEE Transactions on Consumer Electronics, Vol. 55, No. 2, pp. 754-762, 2009.
    [5] Malgorzata Zalesinska, “The impact of the luminance, size and location of LED billboards on drivers’ visual performance—laboratory tests,” Accident Analysis and Prevention, 117, pp. 439-448, 2018
    [6] Dongyu Liu, Di Weng, Yuhong Li, Jie Bao, Yu Zheng, Huamin Qu, Yingcai Wu, “SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations,” IEEE Transactions on Visualization and Computer Graphics, Vol. 23, No. 1, pp. 1-10, 2017.
    [7] Toyotaro Tokimoto, Shiro Suyama, Hirotsugu Yamamoto, “4320-Hz LED display with pulse-width modulation by use of a nonlinear clock,” Journal of Display Technology, Vol. 12, No. 12, pp. 1581-1587, 2016.
    [8] Israel Kofi Nyarko, Ernest Kafui Tsetse, Simon Kojo Mesa Avorgah, “Is billboard advertising an effective tool in the marketing of home appliances?,” Asian Journal of Social Sciences and Management Studies, Vol. 2, No. 3, pp. 101-108, 2015.
    [9] Daniel Belyusar, Bryan Reimer, Bruce Mehler, Joseph F. Coughlin, “A field study on the effects of digital billboards on glance behavior during highway driving,” Accident Analysis and Prevention, Vol. 88, pp. 88-96, 2016
    [10] Alejandro Garces, “A linear Three-Phase load flow for power distribution systems,” IEEE Transactions on Power Systems, Vol. 31, No. 1, pp. 827-828, 2016.
    [11] Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang, “Impact of grid connection of largescale wind farms on power system small-signal angular stability,” CSEE Journal of Power and Energy Systems, Vol. 1, No. 2, pp. 83-89, 2015.
    [12] Leon Thurner, Alexander Scheidler, Florian Schafer, “Pandapower - an open source python tool for convenient modeling, analysis and optimization of electric power systems,” IEEE Transactions on Power Systems, Vol. 33, No. 6, pp. 6510-6521, 2018.
    [13] Wenping Qin, Peng Wang, Xiaoqing Han, Xinhui Du, “Reactive power aspects in reliability assessment of power systems,” IEEE Transactions on Power Systems, Vol. 26, No. 1, pp. 85-92, 2011.
    [14] Jiabin Wang, David Howe, “A power shaping stabilizing control strategy for DC power systems with constant power loads,” IEEE Transactions on Power Electronics, Vol. 23, No. 6, pp. 2982-2989, 2008.
    [15] Olof Samuelsson, Morten Hemmingsson, Arne Hejde Nielsen, Knud Ole Helgesen Pedersen, Joana Rasmussen, “Monitoring of power system events at transmission and distribution level,” IEEE Transactions on Power Systems, Vol. 21, No. 2, pp. 1007-1009, 2006.
    [16] Volodymyr K. Malyutenko, Sergey S. Bolgov, Andrey N. Tykhonov, “Research on performance of red vertical AlGaInP/GaAs light emitting diodes influenced by current crowding,” IEEE Photonics Technology Letters, Vol. 23, No. 23, pp. 1745-1747, 2011.
    [17] Chung-Hao Chiang, Syuan-Jhih Gong, Ting-Shi Zhan, Kuo-Ching Cheng, Sheng-Yuan Chu,”White light-emitting diodes with high color rendering index and tunable color temperature fabricated using separated phosphor layer structure,” IEEE Electron Device Letters, Vol. 37, pp. 898-901, 2016
    [18] Ramesh Karri, Alex Orailoglu, “Standard seven segmented display for burmese numerals,” IEEE Transactions on Consumer Electronics, Vol. 36, No. 4, pp. 959-961, 1990.
    [19] Masako Akanegawa, Yuichi Tanaka, and Masao Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Transactions on Intelligent Transportation Systems, Vol. 2, No. 4, pp. 197-203, 2001

    [20] John Sarik, Akintunde Ibitayo Akinwande, Ioannis Kymissis, “A laboratory-based course in display technology,” IEEE Transactions on Education, Vol. 54, No. 2, pp. 314-319, 2011.
    [21] Chin-Sien Moo, Kuo-Hsing Lee, Hau-Chen Yen, “Profiling starting transient of fluorescent lamp with high-frequency electronic ballast,” IEEE Transactions on Plasma Science, Vol. 37, No. 12, pp. 2353-2358, 2009.
    [22] Youngjin Cho, Jae-Jung Kim, “Lifetime decrease of halogen lamps for automotive by duty cycle stress,” IEEE Transactions on Reliability, Vol. 60, No. 3, pp. 550-556, 2011.
    [23] Antonio Martín, Nerea Bordel, Cecilio Blanco, Juan Carlos Alvarez Antón, Georges Zissis, “Comparison of the emission of a High-Pressure sodium lamp working at 50 Hz and at high frequency,” IEEE Transactions on Industry Applications, Vol. 46, No. 5, pp. 1740-1745, 2010.
    [24] Mark G. Raizen, “Mercury isotopes for efficient UV lamps and fluorescent lighting,” IEEE Transactions on Industry Applications, Vol. 52, No. 6, pp. 5231-5234, 2016.
    [25] Kuo-Ju Chen, Hsuan-Ting Kuo, Yen-Chih Chiang, Hsin-Chu Chen, Chao-Hsun Wang, Min-Hsiung Shih, Chien-Chung Lin, Ching-Jen Pan, Hao-Chung Kuo, “Efficiency and droop improvement in hybrid warm white LEDs using InGaN and AlGaInP high-voltage LEDs,” Journal of Display Technology, Vol. 9, No. 4, pp. 280-284, 2013.
    [26] Kuo-Ing Hwu , Yi-Hung Chen, “A novel dimming technique for cold cathode fluorescent lamp,” IEEE Transactions on Industry Applications, Vol. 46, No. 6, pp. 2196-2201, 2010.
    [27] Woo-Young Choi, “A Highly Power-Efficient LED Back-Light Power Supply for LCD Display,” Journal of Display Technology, Vol. 9, No. 5, pp. 383-384, 2013.
    [28] Chang-Yu Wu, Tsai-Fu Wu, Jiun-Ren Tsai, Yaow-Ming Chen, Chien-Chih Chen, “Multistring LED backlight driving system for LCD panels with color sequential display and area control,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, pp. 3791-3800, 2008.
    [29] Chenhui Peng, Xiaoning Li, Pu Zhang, Lingling Xiong, Xingsheng Liu, “RGB high brightness LED modules for projection display application,” Journal of Display Technology, Vol. 7, No.8, pp. 448-453, 2011.
    [30] Shih-Mim Liu, Yan-Chi Chou, “Color calibration for a surrounding truecolor LED display system by PWM controls,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 6244-6252, 2014.
    [31] Ali Nazeran Motlagh, Massoud Reza Hashemi, “Minimal viewing distance calculation in LED display panels,” Journal of Display Technology, Vol. 6, No. 12, pp. 620-624, 2010.
    [32] Yunfeng Zhang, Qinglan Fan, Fangxun Bao, Yifang Liu, Caiming Zhang, “Single-Image Super-Resolution based on rational fractal interpolation,” IEEE Transactions on Image Processing, Vol. 27, No. 8, pp. 3782-3797, 2018.
    [33] Heng Yao, Shuozhong Wang, Yan Zhao, Xinpeng Zhang, “Detecting image forgery using perspective constraints,” IEEE Signal Processing Letters, Vol. 19, No. 3, pp. 123-126, 2012.
    [34] Ray-Hua Horng, Huan-Yu Chien, Fu-Gow Tarntair, Dong-Sing Wuu, “Fabrication and study on red light micro-LED displays,” IEEE Journal of the Electron Devices Society, Vol. 6, pp. 1064–1069, 2018.
    [35] Bin Tang, Jiahao Miao, Yingce Liu, Shengjun Zhou, Haohao Xu, Hui Wan, “Insights into the influence of sidewall morphology on the light extraction efficiency of mini-LEDs,” IEEE Photonics Journal, Vol. 11, No. 4, Article No. 8200907, 2019.
    [36] Muna E. Raypah, Bashiru K. Sodipo, Mutharasu Devarajan, Fauziah Sulaiman, “Estimation of optical power and heat-dissipation factor of low-power SMD LED as a function of injection current and ambient temperature,” IEEE Transactions on Electron Devices, Vol. 63, No. 1, pp. 408-413, 2016.

    QR CODE