簡易檢索 / 詳目顯示

研究生: 杜俊宇
Chun-Yu Du
論文名稱: 永磁同步馬達之智慧型即時控制系統設計與實現
The Design and Implementation of Real-Time Intelligent Control System for Permanent Magnet Synchronous Motor
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
張嘉德
Chia-Der Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 即時控制磁場導向控制永磁同步馬達遺傳演算法則狀態回授設計模糊邏輯控制器
外文關鍵詞: Real-Time Control, Field-Oriented Control, Permanent Magnet Synchronous Motor, Genetic Algorithm, State Feedback Design, Fuzzy Logic Controller
相關次數: 點閱:373下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以個人電腦為基礎來設計交流伺服馬達即時控制系統,利用交流電機磁場導向控制理論發展永磁同步馬達驅動系統。主要採用MATLAB/Simulink、Real-Time Workshop等模組化的軟體工具整合系統設計及理論模擬,並發展而建立一個控制器快速原型化的實驗平台,並在此平台上進行控制器設計、理論模擬及實務驗證。
    在控制器設計方面,以系統的動態響應能快速到達期望值及無穩態誤差為目標。首先,導出永磁同步馬達之精確的數學模型,在電流和轉速的回授控制迴路中使用比例-積分(PI)控制器,並以閉迴路轉移函數之極點指定法進行傳統的補償設計。另外,探討在馬達之數學模型不易獲得時,則比例-積分控制器的參數可藉由整個受控系統實驗而依據Ziegler-Nichols調整法則得之;亦可採用遺傳演算法則獲得最佳化轉速控制器之比例-積分控制參數。其次,以電流和轉速為狀態變數,使用狀態回授設計方法以增益調整作為系統的控制器,接著在系統中引入積分器增加系統型態以控制無穩態誤差。最後,利用模糊邏輯控制器取代狀態回授設計方法,期使系統更具效能並有快速穩定的效果。
    實驗結果顯示,所建立之永磁同步馬達即時系統在運動控制理論模擬及實務驗證,其具有一致的響應。所提議之控制器設計方法能改善系統的動態響應,使系統更快速地到達設定值、無穩態誤差,達到良好性能之目標;且經由實務驗證,系統在外加負載干擾時,其輸出響應亦具有強健性。


    This study aimed to design an AC servo motor real-time control system based on personal computer, and develop the permanent magnet synchronous motor (PMSM) drive system by the field-oriented control theory for AC machines. It mainly used software module tools such as MATLAB/Simulink and Real-Time Workshop to integrate system design and establish an experimental advance platform with rapid controller prototyping. The design, simulation and implementation of controller can be carried out on this platform.
    In the controller design, the rapid achievement of the desire values for the dynamic response of the system and eliminate steady-state errors were the objective of this study. First, this study derived the mathematical model of PMSM, and conducted the traditional compensation design through the pole placement method by using proportional and integral (PI) controller in the current and speed feedback control loop. In addition, this study explored and discussed that the PI controller parameters can be obtained through the Ziegler-Nichols tuning rule of the entire controlled system, and the speed controller adopts optimal PI control using genetic algorithm if the mathematical model of the PMSM is not applied. Next, with current and speed as the state variables, the state feedback would be applied to design the control system. Finally, the design method of using fuzzy logic controller would be employed to make the control system more efficient and produce fast and stable effects as well.
    The experimental results demonstrated that the established PMSM real-time system have consistent response in motion control simulation and implementation. The proposed controller design method has good properties while its output response has robustness with external loads of disturbance by implementation verification system.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表索引 Ⅷ 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的與方法 2 1.3 內容大綱 3 第二章 永磁同步馬達磁場導向驅動系統 5 2.1 簡介 5 2.2 永磁同步馬達數學模型 5 2.2.1 空間相量與座標轉換 6 2.2.2 向量控制理論與交流電機之驅動控制 9 2.2.3 一般化交流電機數學模型 10 2.2.3.1 電壓方程式 10 2.2.3.2 電磁轉矩方程式 12 2.2.3.3 電機-機械動態方程式 13 2.2.4 永磁同步馬達的動態方程式 14 2.3 永磁同步馬達之轉子磁通導向驅動系統設計 16 2.3.1 轉子磁通導向控制原理 16 2.3.2 定子電壓補償器設計 17 2.3.3 驅動系統設計 17 2.4 基於個人電腦之交流伺服馬達驅動控制實驗平台 18 2.4.1 電能轉換模組 19 2.4.1.1 變頻器的主電路 19 2.4.1.2 變頻器的數學模型與變壓變頻之實施方法 20 2.4.1.3 電流感測電路 23 2.4.2 電動機-機械負載系統 24 2.4.2.1 電動機的轉移函數 25 2.4.2.2 轉速與位置感測器 26 2.4.2.3 磁粉式制動器及控制單元 28 2.4.3 電腦輔助即時控制發展系統 29 2.4.3.1 驅動介面卡 29 2.4.3.2 軟體發展環境 30 第三章 古典和近代控制系統的設計與實現 32 3.1 簡介 32 3.2 古典控制系統的設計及實作 33 3.2.1 線性一階裝置的比例-積分-微分控制 34 3.2.1.1 比例型控制器 34 3.2.1.2 比例-積分型控制器 35 3.2.1.3 比例-積分-微分型控制器 35 3.2.2 電流控制迴路設計 36 3.2.3 轉速控制迴路設計 37 3.2.3.1 零點消去與極點指定方法 38 3.2.3.2 Ziegler-Nichols調整法則 39 3.2.4 實驗方法與結果 42 3.3 近代控制系統的設計及實作 51 3.3.1 狀態回授之極點配置設計 51 3.3.2 具有積分控制之狀態回授設計 54 3.3.3 永磁同步馬達之狀態空間建模 57 3.3.4 實驗方法與結果 59 3.4 實驗結果與討論 65 第四章 智慧型控制系統的設計與實現 67 4.1 簡介 67 4.2 遺傳演算法則之最佳化控制系統的設計及實作 68 4.2.1 遺傳演算法的架構和基本步驟 69 4.2.2 基於遺傳演算法則的比例-積分型控制器參數最佳化 70 4.2.3 實驗方法與結果 72 4.3 模糊邏輯控制系統的設計及實作 76 4.3.1 模糊邏輯控制器的架構 76 4.3.2 模糊邏輯控制器設計 82 4.3.3 實驗方法與結果 87 4.4 結合狀態回授與模糊邏輯控制器的設計及實作 90 4.4.1 智慧型觀測器設計 90 4.4.2 實驗方法與結果 91 4.5 實驗結果與討論 94 第五章 結論與未來研究方向 95 5.1 結論 95 5.2 未來研究方向 96 參考文獻 97 附錄 A-1 馬達與變頻器及電壓補償器模型 102 A-2 馬達實作與啟動電源模型 103 A-3 極點指定方法及遺傳演算法則之控制器設計模型 104 A-4 Ziegler-Nichols調整法則之控制器設計模型 105 A-5 狀態回授及結合模糊邏輯理論之控制器設計模型 106 A-6 積分控制無穩態誤差之控制器設計模型 107 A-7 模糊邏輯控制器設計模型 108 作者簡介 109

    [1] T. Kenjo, “Electric Motor and their Controls”, Oxford University Press: New York, 2003.

    [2] 郭中豐, 徐誌輝, “永磁同步馬達之建模與控制”, 碩士論文, 國立臺灣科技大學自動化及控制研究所, 民國九十三年一月。

    [3] C. C. Hwang, and Y. H. Cho, “Effects of Leakage Flux on Magnetic Fields of Interior Permanent Magnet Synchronous Motors”, IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 3021-3024, July 2001.

    [4] M. A. Rahman, and P. Zhou, “Analysis of Brushless Permanent Magnet Synchronous Motors” , IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, pp. 256-267, April 1996.

    [5] B. Singh, C. L. Swamy, B. P. Singh, A. Chandra, and K. A. Haddad, “Performance Analysis of Fuzzy Logic Controlled Permanent Magnet Synchronous Motor Drive”, IEEE Industrial Electronics, Control, and Instrumentation 21st International Conference, Vol. 1, pp. 399-405, Nov. 1995.

    [6] J. O. Pinto, J. S. Lawler, and N. P. Filho, “Extended Constant Power Speed Range of the Permanent Magnet Synchronous Machine Driven by Dual Mode Inverter Control”, IEEE Power Electronics 36th Specialists Conference, pp. 1247-1252, 2005.

    [7] J. S. Yu, S. H. Kim, B. K. Lee, C. Y. Won, and J. Hur, “Fuzzy-Logic-Based Vector Control Scheme for Permanent-Magnet Synchronous Motors in Elevator Drive Applications”, IEEE Transactions on Industrial Electronics, Vol. 54, No. 4, pp. 2190-2200, August 2007.

    [8] F. Blaschke, “The Principle of Field Orientation as Applied to the New Transvector Closed Loop Control System for Rotating Field Machines”, Siemens Review, Vol. 34, pp. 217-220, 1972.

    [9] G. Yang, Y. Liu, N. Cui, and P. Zhao, “Design and Implementation of FPGA-Based AC Servo System”, IEEE Intelligent Control and Automation 6th World Congress, pp. 8145-8149, Dalian China, June 2006.

    [10] K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Technology”, IEEE Transactions on Control Systems Technology, Vol. 13, No. 4, pp. 559-576, July 2005.

    [11] P. Tang, G. Yang, M. Luo, and T. Li, “A Current Control Scheme with Tracking Mode for PMSM System”, Systems and Control in Aerospace and Astronautics 1st International Symposium, pp. 872-876, January 2006.

    [12] C. R. Rojas, R. A. Rojas, and M. E. Salgado, “Equivalence Between Transfer-Matrix and Observed-State Feedback Control”, IEE Control Theory and Applications, Vol. 153, No. 2, pp. 147-155, March 2006.

    [13] A. Benlatreche, and D. Knittel, “State Feedback Control with Full or Partial Integral Action for Large Scale Winding Systems”, Industry Applications Conference, pp. 973-978, 2005.

    [14] J. Xu, J. Zhao, L. Luo, and S. Wan, “Expert PID Control for AC/DC Converter”, IEEE Intelligent Control and Automation 5th World Congress, pp. 5586-5589, Hangzhou China, June 2004.

    [15] Z. Y. Zhao, M. Tomizuka, and S. Isaka, “Fuzzy Gain Scheduling of PID Controllers”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 5, pp. 1392-1398, Sept.-Oct. 1993.

    [16] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Development and Implementation of a Hybrid Intelligent Controller for Interior Permanent-Magnet Synchronous Motor Drives”, IEEE Transactions on Industry Applications, Vol. 40, No. 1, pp. 68-76, Jan.-Feb. 2004.

    [17] C. F. Juang, and J. S. Chen, “Water Bath Temperature Control by a Recurrent Fuzzy Controller and Its FPGA Implementation”, IEEE Transactions on Industrial Electronics, Vol. 53, No. 3, pp. 941-949, June 2006.

    [18] Y. Zhao, and E. Collins, “Fuzzy PI Control Design for an Industrial Weigh Belt Feeder”, IEEE Transactions on Fuzzy Systems, Vol. 11, No. 3, pp. 311-319, June 2003.

    [19] K. Y. Lian, C. Chiang, and H. W. Tu, “LMI-Based Sensorless Control of Permanent-Magnet Synchronous Motors ”, IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2769-2778, October 2007.

    [20] 詹前茂, 張君源, “永磁同步馬達驅動模擬晶片設計與實現”, 碩士論文, 國立宜蘭大學電機工程學系, 民國九十六年七月。

    [21] The Math Work, Inc., “Real-Time Workshop User,s Guide”, Math Work: Natick, 1997.

    [22] 肖 偉, “MATLAB程序設計與應用”, 北京交通大學出版社, 2005。

    [23] 劉昌煥, “交流電機控制”, 東華書局, 民國九十二年。

    [24] 詹前茂, “電機驅動控制理論與實驗”, 新文京出版社, 民國九十二年。

    [25] K. Y. Cheng, and Y. Y. Tzou, “Fuzzy Optimization Techniques Applied to the Design of a Digital PMSM Servo Drive”, IEEE Transactions on Power Electronics, Vol. 19, No. 4, pp. 1085-1099, July 2004.

    [26] J. X. Cheng, Z. O. Zhu, and J. M. Buckley, “Fuzzy Logic Speed Control and Current -Harmonic Reduction in Permanent-Magnet Brushless AC Drives”, IEE Electr. Power Applications, Vol. 152, No. 3, pp. 437-446, May 2005.

    [27] C. M. Ong “Dynamic Simulation of Electric Machinery”, Prentice-Hall: New Jersey, 1998.

    [28] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, “Analysis of Electric Machinery and Drive Systems”, IEEE Press: New York, 2002.

    [29] H. A. Toliyat, and S. G. Campbell, “DSP_Based Electromechanical Motion Control”, CRC Press: Florida, 2004.

    [30] W. Leonward, “Control of Electrical Drives”, Springer-Verlag: New York, 2001.

    [31] 許溢适, 劉昌煥, “AC伺服系統的理論與設計實務”, 文笙書局, 民國九十一年。

    [32] 詹前茂, 薛昌隆, 鄭安泰, “「電動機控制」實習課程教材之規劃-永磁同步電動機部份”, 第二十三屆電力工程研討會, pp. 420-424, 中壢, 2002.

    [33] C. Y. Du, and G. R. Yu, “Optimal PI Control of a Permanent Magnet Synchronous Motor using Particle Swarm Optimization”, IEEE ICICIC '07. Second International Conference, pp. 255-255, Kumamoto Japan, September 2007.

    [34] 王金標, “電動機控制-馬達驅動器理論及實作”, 全威圖書, 民國九十年。

    [35] 張燕賓, “SPWM變頻調速應用技術”, 機械工業出版社: 北京, 2005。

    [36] 王偉修, 劉昌煥, “PC-Based馬達控制器即時發展系統”, 微鋒科技, 民國八十七年。

    [37] J. Webb, and K. Greshock, “Industrial Control Electronics”, Maxwell-Macmillan: New York, 1993.

    [38] 陳文耀, “電動機控制工程”, 復文書局, 民國九十二年。

    [39] 瞿 亮, “基于MATLAB的控制系統計算機仿真”, 北京交通大學出版社, 2006。

    [40] 李顯宏, “MATLAB 7.x介面開發與編譯技巧”, 文魁資訊, 民國九十四年。

    [41] 楊高波, “精通MATLAB 7.0混合編程”, 電子工業出版社: 北京, 2006。

    [42] G. F. Franklin, J. D. Powell, and A. E. Naeini, “Feedback Control of Dynamic System”, Prentice-Hall: New Jersey, 2002.

    [43] 許允傑, “馬達控制”, 全華圖書, 民國八十三年。

    [44] N. F. Macia, and G. J. Thaler, “Modeling and Control of Dynamic Systems”, Thomson Delmar Learning: New York, 2005.

    [45] B. C. Kuo, and F. Golnaraghi, “Automatic Control Systems”, John Wiley & Sons: New York, 2003.

    [46] G. J. Silva, A. Datta, and S. P. Bhattacharyya, “PID Controllers for Time-Delay Systems”, Birkhäuser: Boston, 2005.

    [47] K. J. Aström, “Automatic Tuning of PID Controllers”, Instrument Society of America: NC, 1988.

    [48] 俞克維, “控制系統分析與設計”, 新文京出版社, 民國九十二年。

    [49] K. Ogata, “Modern Control Engineering”, Prentice-Hall: New Jersey, 1990.

    [50] J. Wilkie, M. Johnson, and R. Katebi, “Control Engineering”, Palgrave: Basingstoke, 2002.

    [51] N. S. Nise, “Control Systems Engineering”, John Wiley & Sons: New York, 2000.

    [52] 林俊良, “智慧型控制分析與設計”, 全華圖書, 民國九十四年。

    [53] 曹承志, “智能技術”, 清華大學出版社: 北京, 2004。

    [54] D. A Coley, “An Introduction to Genetic Algorithms for Scientists and Engineers”, World Scientific: New Jersey, 1999.

    [55] A. A. Ramadan, M. T. Faheem, A. F. Amer, and S. A. Sallam, “New Genetic-Based Design of a Pi-Like Fuzzy Logic Speed Controller for an Induction Motor”, IEEE ICCC '04. Second International Conference, pp. 25-32, 2004.

    [56] 田景文, 高美娟 “人工神經網路算法研究及應用”, 北京理工大學出版社, 2006。

    [57] 劉金琨 “先進PID控制MATLAB仿真”, 電子工業出版社: 北京, 2004。

    [58] R. K. Mudi, and N. R. Pal, “A Robust Self-Tuning Scheme for PI- and PD-Type Fuzzy Controllers”, IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 2-16, February 1999.

    [59] C. Butt, and M. A. Rahman, “Limitations of Simplified Fuzzy Logic Controller for IPM Motor Drive”, IEEE Industry Applications 39th Conference, Vol. 3, pp. 1891-1898, 2004.

    [60] S. N. Sivanandam, S. N. Deepa, and S. Sumathi, “Introduction to Fuzzy Logic using MATLAB”, Springer-Verlag: New York, 2007.

    [61] L. X. Wang, “A Course in Fuzzy Systems and Control”, Prentice-Hall: New Jersey, 1997.

    [62] H. Zhuang, and S. Wongsoontorn, “Knowledge-based Tuning Ι: Design and Tuning of Fuzzy Control Surface with Bezier Function”, Advance in Industrial Control Series, Springer-Verlag: London, 2006.

    QR CODE