簡易檢索 / 詳目顯示

研究生: 蔡東佑
Tung-Yu Tsai
論文名稱: 使用鈣改質鐵系載氧體於移動床化學迴路程序燃燒木炭之研究
Chemical Looping Combustion of Charcoal with Calcium Modified Iron-based Oxygen Carriers in an Annular Dual-tube Moving Bed Reactor
指導教授: 李豪業
Hao-Yeh Lee
顧 洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Di-Hua Zeng
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 109
中文關鍵詞: 化學迴路程序移動床燃料反應器鈣改質鐵系載氧體木炭
外文關鍵詞: Chemical Looping Process, Moving Bed Fuel Reactor, Calcium Modification, Iron-based Oxygen Carriers, Charcoal
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之主要目的是探討兩種不同來源之氧化鐵作為載氧體之活性相並透過鈣改質提升整體之反應性,於移動床式燃料反應器應用化學迴路程序處理固體燃料。選用高含量固定碳之木炭與載氧體進行化學迴路燃燒程序,探討使用鈣改質電爐石/氧化鋁以及鈣改質氧化鐵粉/氧化鋁對木炭之反應及空氣汙染評估。透過添加氫氧化鈣以及氧化鋁載體改善電爐石於長時間操作下之反應性及穩定性,藉由物理與化學特性測試,以20 wt. %氫氧化鈣改質之鐵係載氧體與合成氣具有最佳之反應性,且鈣改質電爐石/氧化鋁相較鈣改質氧化鐵粉/氧化鋁載氧體具有較高之機械強度及較低磨耗。應用鈣改質鐵係載氧體進行化學迴路燃燒程序,探討不同反應溫度,載氧體流量及氣化劑流量之影響。較高的反應溫度可促進氣化反應的發生,使載氧體及燃料轉化率隨之提升;載氧體流量加快會降低木炭和載氧體於反應器之滯留時間,造成載氧體轉化率降低,但對於燃料轉化率影響不顯著;而增加氣化劑流量,載氧體及燃料轉化率也會隨之增加。於最佳操作參數下,鈣改質電爐石/氧化鋁對燃料轉化率為31.26% 較鈣改質氧化鐵粉/氧化鋁之26.87% 高。結果顯示,工業廢棄物(電爐石)可作為載氧體之活性相且經過改質後之反應性較商用氧化鐵粉佳,為一項具備低成本,高反應性之鐵係原料。為隨後針對鈣改質鐵係載氧體於化學迴路燃燒程序進行氮氧化物及二氧化硫濃度排放之檢測,結果顯示氮氧化物及二氧化硫濃度均低於理論計算,證實化學迴路程序可有效降低空氣污染之排放。


Chemical looping combustion was conducted in a moving bed reactor with two kinds of iron source as reactive phase in oxygen carriers and modification with Ca(OH)2 was used to enhance reactivity with fuels. In the moving bed reactor, calcium modified electric arc furnace slag (EAF-slag)/Al2O3 and calcium modified iron oxide powder (Fe2O3)/Al2O3 were selected as oxygen carriers. The reactivity and air pollutant analysis of Ca-modified iron-based oxygen carriers reacting with BC-charcoal were conducted. The reactivity and stability of EAF-slag during long time operation test improved by adding Ca(OH)2 and Al2O3. According to the TGA test, the iron-based oxygen carriers with 20% Ca(OH)2 fraction displayed better reactivity with syngas, and Ca modified EAF-slag/Al2O3 oxygen carriers showed better mechanical properties than Ca modified Fe2O3/Al2O3.
In this research, BC-charcoal combustion was conducted with Ca-modified iron-based oxygen carriers, and the effects of reaction temperatures, oxygen carriers flow rates and steam flow rates were investigated. The fuel conversion and oxygen carriers conversion increased with reaction temperature, and the same trend was observed for steam flow rate. However, the fuel conversion and oxygen carriers conversion decreased with an increasing oxygen carriers flow rate. Under optimal operation conditions, the fuel conversion was 31.26% for Ca modified EAF-slag/Al2O3 which was higher than for Ca modified Fe2O3/Al2O3. Furthermore, the air pollutant analysis indicated that the emission of NOx and SO2 were very low for both Ca-modified iron-based oxygen carriers, which implies that the chemical looping combustion process could reduce emission of air pollutants.

Chinese Abstract I English Abstract III Acknowledgement V Contents VII List of Figures IX List of Tables XIII List of Synbols XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature Review 5 2.1 Chemical Looping Process 5 2.1.1 Chemical Looping Combustion 5 2.1.2 Air Pollution in Chemical Looping Process 13 2.2 Oxygen Carriers for Chemical Looping Process 18 2.2.1 Applications of Iron-based Oxygen Carriers 21 2.2.2 Applications of Industrial Residues as Oxygen Carriers 25 2.3 Solid Fuels Combustion for Chemical Looping Process 28 2.3.1 Solid Fuels Combustion for Chemical Looping with Oxygen Uncoupling 28 2.3.2 Solid Fuels Combustion for Chemical Looping Combustion 30 Chapter 3 Experimental Apparatus and Procedures 33 3.1 Materials 33 3.2 Apparatus 34 3.3 Experimental Procedures 35 3.3.1 Experiment Framework 35 3.3.2 Preparation of Iron-based Oxygen Carriers 40 3.3.3 Chemical Looping Process System 42 3.3.4 Characterization of Iron-based Oxygen Carriers 48 Chapter 4 Results and Discussion 53 4.1 Background Experiments 53 4.1.1 Reactivity and Recyclability Test of Iron-based Oxygen Carriers 53 4.1.2 Characterization of Iron-based Oxygen Carriers 58 4.1.3 Reduction Mechanism of Ca-Modified Iron-based Oxygen Carriers 66 4.2 Charcoal Combustion with Ca-Modified Fe2O3/Al2O3 Oxygen Carriers 71 4.2.1 Effect of Reaction Temperature 71 4.2.2 Effect of Steam Flow Rate 76 4.2.3 Effect of Oxygen Carrier Flow Rate 79 4.2.4 Air Pollutant Analysis 82 4.3 Charcoal Combustion with Ca-Modified EAF-slag/Al2O3 Oxygen Carriers 85 4.3.1 Effect of Reaction Temperature 85 4.3.2 Effect of Steam Flow Rate 88 4.3.3 Effect of Oxygen Carrier Flow Rate 90 4.3.4 Air Pollutant Analysis 92 Chapter 5 Conclusions and Recommendations 95 Reference 98

Abad, A., Mattisson, T., Lyngfelt, A., Ryden, M., “Chemical-looping Combustion in a 300W Continuously Operating Reactor System using a Manganese-based Oxygen Carrier,” Fuel, Vol. 85, pp. 1174–1185 (2006).
Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., and de Diego, L. F., “ Progress in Chemical-Looping Combustion and Reforming technologies,” Prog. Energy Combust. Sci., Vol. 38, pp. 215-282 (2012).
Adánez, J., de Diego, L. F., García-Labiano, F., Gayán, P., and Abad, A., “Selection of Oxygen Carriers for Chemical-looping Combustion,” Energy & Fuels, Vol. 18, pp. 371-377 (2004).
Adánez-Rubio, I., Abad, A., Gayán, P., García-Labiano, F., de Diego, L., and Adánez, J., “The Fate of Sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process,” Appl. Energy, Vol. 113, pp. 1855-1862 (2014).
Ahlm, L., Julin, J., Fountoukis, C., Pandis, S. N., and Riipinen, I., “Particle Number Concentrations Over Europe in 2030: The Role of Emissions and New Particle Formation,” Atmos. Chem. Phys., Vol. 13, pp. 10271–10283 (2013).
Azimi, G., Mattisson, T., Leion, H., Rydén, M., and Lyngfelt, A., “Comprehensive Study of Mn–Fe–Al Oxygen-carriers for Chemical-looping with Oxygen Uncoupling (CLOU),” Int. J. Greenhouse Gas Control, Vol. 34, pp. 12-24 (2015).
Bao, J., Li, Z., and Cai, N., “Promoting the Reduction Reactivity of Ilmenite by Introducing Foreign Ions in Chemical Looping Combustion,” Ind. Eng. Chem.Res., Vol.52, pp. 6119-6128 (2013).
Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L. and Fan, L. S., “Parametric and Dynamic Studies of an Iron-based 25-kWth Coal Direct Chemical Looping Unit using Sub-bituminous Coal,” Appl. Energy, Vol. 145, pp. 354-363 (2015).
Chen, L., Liu, F., S, N. H., Fan, Z., and Liu, K., “Coal Char-Fueled Chemical Looping Combustion use Different Iron-based Oxygen Carriers,” Energy Procedia, Vol. 63, pp. 73-79 (2014).
Chen, S., Xiang, W., Shi, Q., Xue, Z., and Sun, X., “Experimental Investigation of Chemical-looping Hydrogen Generation using Al2O3 or TiO2-supported Iron Oxides in a Batch Fluidized Bed,” Int. J. Hydrogen Energy, Vol. 36, pp. 8915-8926 (2011).
Chen, S., Xiang, W., Xue, Z., and Sun, X., “Experimental Investigation of Chemical Looping Hydrogen Generation using Iron Oxides in a Batch Fluidized Bed,” Proc. Combust. Inst., Vol. 33, pp. 2691-2699 (2010).
Chiu, P. C., Ku, Y., Wu, H. C., Kuo, Y. L., and Tseng, Y. H., “Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-Tube Moving Bed Reactor with Iron-based Oxygen Carrier,” Fuel, Vol. 135, pp. 146-152 (2014).
Cho, G. C., Dodds, J., and Santamarina, J. C., “Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crush Sands,” J. Geotech. Geoenviron. Eng., Vol. 132, pp. 591-602 (2006).
Cho, P., Mattisson, T., and Lyngfelt, A., “Carbon Formation on Nickel and Iron Oxide-containing Oxygen Carriers for Chemical-looping Combustion,” Ind. Eng. Chem. Res., Vol. 44, pp. 668-676 (2005).
Cho, P., Mattisson, T., and Lyngfelt, A., “Comparison of Iron-, Nickel-, Copper- and Manganese-based Oxygen Carriers for Chemical-looping Combustion,” Fuel, Vol. 83, pp. 1215-1225 (2004).
Cho, W.C., Seo, M.W., Kim, S.D., Kang, K.S., Bae, K.K., Kim, C.H., Jeong, S.U., and Park, C.S., “Reactivity of Iron Oxide as an Oxygen Carrier for Chemical-looping Hydrogen Production,” Int. J. Hydrogen Energy, Vol. 37, pp. 16852-16863 (2012).
Chung, C., Pottimurthy, Y., Xu, M., Hsieh, T. L., Xu, D., Zhang, Y., Chen, Y. Y., He, P., Pickarts, M., Fan, L. S., and Tong, A., “Fate of sulfur in coal-direct chemical looping systems,” Appl. Energy, Vol. 208, pp. 678-690 (2017).
Cuadrat, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F., and Adánez, J., “Relevance of the Coal Rank on the Performance of the In Situ Gasification Chemical-looping Combustion,” Chem. Eng. J., Vol. 195, pp. 91-102 (2012).
Cuadrat, A., Linderholm, C., Abad, A., Lyngfelt, A., and Adanez, J., “Influence of Limestone Addition in a 10 kWth Chemical-Looping Combustion Unit Operated with Petcoke,” Energy & Fuels, Vol. 25, pp. 4818-4828 (2011).
de Diego, L., Ortiz, M., Labiano, F., Adánez, J., Abad, A., and Gayán, P., “Synthesis Gas Generation by Chemical-looping Reforming using a Ni-based Oxygen Carrier,” Energy Procedia, Vol. 1, pp. 3-10 (2009).
Duan, W., Yu, Q., Wu, T., Yang, F., and Qin, Q., “Experimental Study on Steam Gasification of Coal using Molten Blast Furnace Slag as Heat Carrier for Producing Hydrogen-enriched Syngas,” Energy Convers. Manage., Vol. 117, pp. 513-519 (2016).
Epple B., “Fluidized Bed Based Looping Processes for Carbon Capture,” Carbon Capture and Storage (CCS) Workshop, Darmstadt, Germany, (2010).
Fan, L. S., “Chemical Looping Systems for Fossil Energy Conversions,” John Wiley & Sons Inc., Hoboken, New Jersey, USA (2010).
Fan L. S., “Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for in-situ CO2 Capture,” 2011 NETL CO2 capture technology meeting, Pittsburgh, Pennsylvania, USA, (2011).
Feng, J., Li, W. Y., Xie, K. C., Liu, M. R., and Li, C. Z., “Studies of the Release Rule of NOx Precursors during Gasification of Coal and Its Char,” Fuel Process. Technol., Vol. 84, pp.243-254 (2003).
Forero, C. R., Gayánb, P., García-Labiano, F., de Diego, L. F., Abad, A. and Adánez, J., “High Temperature Behaviour of a CuO/ Al2O3 Oxygen Carrier for Chemical-looping Combustion,” Int. J. Greenhouse Gas Control, Vol. 5, pp.659-667 (2011).
Frick, V., Rydén, M., and Leion, H., “Investigation of Cu–Fe and Mn–Ni Oxides as Oxygen Carriers for Chemical-looping Combustion,” Fuel Process. Technol., Vol. 150, pp. 30-40 (2016).
Ge, H., Guo, W., Shen, L., Song, T. and Xiao, J., “Experimental Investigation on Biomass Gasification using Chemical Looping in a Batch Reactor and a Continuous Dual Reactor,” Chem. Eng. J., Vol. 286, pp. 689-700 (2016).
Gu, H., Shen, L., Xiao, J., Zhang, S., Song, T., and Chen, D., “Iron Ore as Oxygen Carrier Improved with Potassium for Chemical Looping Combustion of Anthracite Coal,” Combust. Flame, Vol. 159, pp. 2480-2490 (2012).
Gu, H., Shen, L., Zhong, Z., Niu, X., Ge, H., Zhou, Y., Xiao, S., and Jiang, S., “NO Release during Chemical Looping Combustion with Iron Ore as an Oxygen Carrier,” Chem. Eng. J., Vol. 264, pp. 211-220 (2015).
Gu, H., Shen, L., Zhong, Z., Niu, X., Liu, W., Ge, H., Jiang, S., and Wang, L., “Cement/CaO-modified Iron Ore as Oxygen Carrier for Chemical Looping Combustion of Coal,” Appl. Energy, Vol. 157, pp. 314-322 (2015).
Gupta, P., Velazquez-Vargas, L.G., and Fan, L.S., and “Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas,” Energy & Fuels, Vol. 21, pp. 2900-2908 (2007)
Hamers, H. P., Romano, M. C., Spallina, V., Chiesa, R., Gallucci, F., and Annaland, M. V., “Energy Analysis of Two Stage Packed-bed Chemical Looping Combustion Configurations for Integrated Gasification Combined Cycles,” Energy, Vol. 85, pp. 489-502 (2015).
Hossain, M. M., and de Lasa, H. I., “Chemical-looping Combustion (CLC) for Inherent CO2 Separations—a Review,” Chem. Eng. Sci., Vol. 63, pp. 4433-4451 (2008).
Hossain, M. M., Sedor, K. E., and de Lasa, H. I., “Co-Ni/Al2O3 Oxygen Carrier for Fluidized Bed Chemical-looping Combustion: Desorption Kinetics and Metal-support Interaction,” Chem. Eng. Sci. Vol. 62, pp. 5464-5472 (2007).
Huang, W. C., Kuo, Y. L., Su, Y. M., Tseng, Y. H., Lee, H. Y., and Ku, Y., “A Facile Method for Sodium-modified Fe2O3/Al2O3 Oxygen Carrier by an Air Atmospheric Pressure Plasma Jet for Chemical Looping Combustion Process,” Chem. Eng. J., Vol. 316, pp. 15-23 (2017).
Huang, Z., He, F., Zhu, H., Chen, D., Zhao, K., Wei, G., Feng, Y., Zheng, A., Zhao, Z., and Li, H., “Thermodynamic Analysis and Thermogravimetric Investigation on Chemical Looping Gasification of Biomass Char under Different Atmospheres with Fe2O3 Oxygen Carrier,” Appl. Energy, Vol. 157, pp. 546-553 (2015).
Huang, Z., Zhang, Y., Fu, J., Yu, L., Chen, M., Liu, S., He, F., Chen, D., Wei, G., Zhao, K., Zheng, A., Zhao, Z., Li, H., “Chemical Looping Gasification of Biomass Char using Iron Ore as an Oxygen Carrier,” Int. J. Hydrogen Energy, Vol. 41, pp. 17871-17883 (2016).
Ishida, M., and Jin, H., “ A Novel Combustor Based on Chemical-looping Reactions and Its Reaction Kinetics,” J. Chem. Eng. Jpn., Vol. 27, pp. 296-301 (1994).
Ishida, M., Zheng, D., and Akehata, T., “Evaluation of A Chemical-Looping Combustion Power-Generation System by Graphic Energy Analysis,” Energy, Vol. 12, pp. 147–154 (1987).
Jerndal, E., Mattisson, T., Lyngfelt, A., “Thermal Analysis of Chemical-looping Combustion,” Chem. Eng. Res. Des., Vol. 84, pp. 795-806 (2006).
Jiang, S., Shen, L., Wu, J., Yan, J., and Song, T., “The Investigations of Hematite-CuO Oxygen Carrier in Chemical Looping Combustion,” Chem. Eng. J., Vol. 317, pp. 132-142 (2017).
Källén, M., Hallberg, P., Rydén, M., Mattisson, T. and Lyngfelt, A., “Combined Oxides of Iron, Manganese and Silica as Oxygen Carriers for Chemical-looping Combustion,” Fuel Process. Technol., Vol. 124, pp. 87-96 (2014).
Kallen, M., Ryden, M., Lyngfelt, A., and Tobias Mattisson, T., “ Chemical-looping Combustion using Combined Iron/Manganese/Silicon Oxygen Carriers,” Appl. Energy, Vol. 157, pp. 330-337 (2015).
Kathe, M.V., Empfield, A., Na, J., Blair, E., and Fan, L.S., “Hydrogen Production from Natural Gas using an Iron-based Chemical Looping Technology: Thermodynamic Simulations and Process System Analysis,” Appl. Energy, Vol. 165, pp. 183-201 (2016).
Kim, H. R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M. V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., and Fan, L. S., “Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-kWth Sub-pilot Unit,” Fuel, Vol. 108, pp. 370-384 (2013).
Kim, K., Yang, S., Baek, J. I., Ryu, C. K., Choi, M., He, Y., Shin, K., and Lee, G., “New Fabrication of Mixed Oxygen Carrier for CLC: Sludge and Scale from a Power Plant,” Fuel, Vol. 111, pp.496-504 (2013).
Kuo, Y. L., Huang, W. C., Tseng, Y. H., Chang, S. H., Ku, Y., and Lee, H. Y., “Electric Arc Furnace Dust as an Alternative Low-cost Oxygen Carrier for Chemical Looping Combustion,” Journal of Hazardous Materials, Vol.342, pp.297-305 (2018).
Leion, H., Mattisson, T., and Lyngfelt, A., “The Use of Petroleum Coke as Fuel in Chemical Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
Leion, H., Lyngfelt, A., and Mattisson, T., “Solid Fuels in Chemical-looping Combustion using a NiO-based Oxygen Carrier,” Chem. Eng. Res. Des., Vol. 87, pp. 1543-1550 (2009).
Lewis, W.K., and Gilliland, E.R., “Production of Pure Carbon Dioxide,” U.S.Patent, Vol. 2,2665, pp. 972 (1954).
Linderholm, C., and Schmitz, M., “Chemical-looping Combustion of Solid Fuels in a 100 kW Dual Circulating Fluidized Bed System using Iron Ore as Oxygen Carrier,” J. Environ. Chem. Eng., Vol. 4, pp. 1029-1039 (2016).
Linderholm, C., Schmitz, M., Knutsson, P., Lyngfelt, A., “Chemical-looping Combustion in a 100-kW Unit using a Mixture of Ilmenite and Manganese Ore as Oxygen Carrier,” Fuel, Vol. 166, pp. 533-542 (2016).
Luo, M., Yia, Y., Wang, S., Wang, Z., Du, M., Pan, J., and Wang, Q., “Review of Hydrogen Production using Chemical-Looping Technology,” Renewable Sustainable Energy Rev., Vol. 81, pp. 3186-3214 (2018).
Ma, J., Zhao, H., Tian, X., Wei, Y., Rajendran, S., Zhang, Y., Bhattacharya, S., and Zheng, C., “Chemical Looping Combustion of Coal in a 5 kWth Interconnected Fluidized Bed Reactor using Hematite as Oxygen Carrier,” Appl. Energy, Vol. 157, pp. 304-313 (2015).
Mattisson, T., Lyngfelt, A., Leion, H., “Chemical-looping with Oxygen Uncoupling for Combustion of Solid Fuels,” Int. J. Greenhouse Gas Control, Vol. 3, pp. 11-19 (2009).
Mendiara, T., Abad, A., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Adanez, J., “Use of an Fe-based Residue from Alumina Production as Oxygen Carrier in Chemical Looping Combustion,” Energy & Fuels, Vol. 26, pp. 1420-1431 (2012).
Mendiara, T., Garcia-Labiano, F., Gayan, P., Abad, A., de Diego, L. F., and Adanez, J., “Evaluation of the Use of Different Coals in Chemical Looping Combustion using a Bauxite Waste as Oxygen Carrier,” Fuel, Vol. 106, pp. 814-826 (2013).
Mendiara, T., Izquierdo, M. T., and Abad, A., “Release of Pollutant Components in CLC of Lignite,” Int. J. Greenhouse Gas Control, Vol. 22, pp. 15-24 (2014).
Moghtaderi B., “Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications.,” Energy Fuels, Vol. 26, pp. 15-40 (2012).
Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M., and Chatterjee, P., “Present Status and Overview of Chemical Looping Combustion Technology,” Renewable Sustainable Energy Rev., Vol. 59, pp. 597-619 (2016)
Nesibe Dilmaç, N., Dilmaç, F. O., and Yardımc, E., “Utilization of Mentes Iron Ore as Oxygen Carrier in Chemical-Looping Combustion,” Energy, Vol. 138, pp. 785-798 (2017).
Niu, X., Shen, L., Jiang, S., Gu, H., and Xiao, J., “Combustion Performance of Sewage Sludge in Chemical Looping Combustion with Bimetallic Cu–Fe Oxygen Carrier,” Chem. Eng. J., Vol. 294, pp. 185-192 (2016).
Nzihou, A., Stanmore, B., and Sharrock, P., “A Review of Catalysts for the Gasification of Biomass Char, with Some Reference to Coal,” Energy, Vol. 58, pp. 305-317 (2013).
Ortiz, M., Gayan, P., de Diego, L. F., Garcia-Labiano, F., Abad, A., and Pans, M. A., “Hydrogen Production with CO2 Capture by Coupling Steam Reforming of Methane and Chemical-looping Combustion: Use of an Iron-based Waste Product as Oxygen Carrier Burning a PSA Tail Gas,” J. Power Sources, Vol. 196, pp. 4370-4381 (2011).
Penthor, S., Zerobin, F., Mayer, K., Pröll, T. and Hofbauer, H., “Investigation of the Performance of a Copper Based Oxygen Carrier for Chemical Looping Combustion in a 120 kW Pilot Plant for Gaseous Fuels,” Appl. Energy, Vol. 145, pp. 52-59 (2015).
Pérez-Vega, R., Abad, A., Gayán, P., de Diego, L. F., García-Labiano, F., and Adánez, J., “Development of (Mn0.77Fe0.23)2O3 Particles as an Oxygen Carrier for Coal Combustion with CO2 Capture via in-situ Gasification Chemical Looping Combustion (iG-CLC) Aided by Oxygen Uncoupling (CLOU),” Fuel Process. Technol., Vol. 164, pp. 69-79 (2017).
Pérez-Vega, R., Adánez-Rubio, I., Gayán, P., Izquierdo, M. T., Abad, A., García-Labiano, F., de Diego, L. F., and Adánez, J., “Sulphur, Nitrogen and Mercury Emissions from Coal Combustion with CO2 Capture in Chemical Looping with Oxygen Uncoupling (CLOU),” Int. J. Greenhouse Gas Control, Vol. 46, pp. 28-38 (2016).
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., and Santos, J., “Effect of Gasification Agent on Co-gasification of Rice Production Wastes Mixtures,” Fuel, Vol. 180, pp. 407-416 (2016).
Pröll, T., Nordenkampf, J., Kolbitsch, P., and Hofbauer, H., “Syngas and a Separate Nitrogen/Argon Stream via Chemical Looping Reforming – A 140 kW Pilot Plant Study,” Fuel, Vol. 89, pp. 1249-1256 (2010).
Protasova, L., and Snijkers, F., “Recent Developments in Oxygen Carrier Materials for Hydrogen Production via Chemical Looping Processes,” Fuel, Vol. 181, pp. 75-93 (2016).
Qamar Zafar, Q., Mattisson, T., and Gevert, B., “Integrated Hydrogen and Power Production with CO2 Capture using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a Support,” Ind. Eng. Chem. Res., Vol. 44, pp. 3485-3496 (2005).
Rydén, M., Cleverstam, E., Johansson, M., Lyngfelt, A., and Mattisson, T., “Fe2O3 on Ce-, Ca-, or Mg-stabilized ZrO2 as Oxygen Carrier for Chemical-looping Combustion using NiO as Additive,” AlChE J., Vol. 56, pp. 2211-2220 (2010).
Schmitz, M., Linderholm, C., and Lyngfelt, A., “Chemical Looping Combustion of Sulphurous Solid Fuels using Spray-Dried Calcium Manganate Particles as Oxygen Carrier,” Energy Procedia, Vol. 63, pp.140-152 (2014).
Schmitz, M. and Linderholm, C., “Performance of Calcium Manganate as Oxygen Carrier in Chemical Looping Combustion of Biochar in a 10 kW Pilot,” Appl. Energy, Vol. 169, pp. 729-737 (2016).
Shen, L., Wu, J., Gao, Z., and Xiao, J., “Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-based Oxygen Carrier,” Combust. Flame, Vol. 157, pp. 934-942 (2010).
Siriwardane, R., Benincosa, W., Riley, J., Tian, H., and Richards, G., “Investigation of Reactions in a Fluidized Bed Reactor During Chemical Looping Combustion of Coal/Steam with Copper Oxide-iron Oxide-alumina Oxygen Carrier,” Appl. Energy, Vol. 183, pp. 1550-1564 (2016).
Siriwardane, R., Riley, J. Tian, H. and Richards, G., “Chemical Looping Coal Gasification with Calcium Ferrite and Barium Ferrite via Solid–solid Reactions,” Appl. Energy, Vol. 165, pp. 952-966 (2016).
Son, S.R., and Kim, S.D., “Chemical-looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Rector with Double Loops,” Ind. Eng. Chem. Res., Vol. 45, pp. 2689–2696 (2006).
Steinfeld, A., Frei, A., and Kuhn, P., “Thermoanalysis of the Combined Fe3O4-reduction and CH4-reforming Processes,” Metall. Mater. Trans. B, Vol. 26, pp. 509-515 (1995)
Teyssie, G., Leion, H., Schwebel, G. L., Lyngfelt, A., and Mattisson, T., “Influence of Lime Addition to Ilmenite in Chemical-Looping Combustion (CLC) with Solid Fuels,” Energy & Fuels, Vol. 25, pp. 3843-3853 (2011).
Tong, A., Bayham, S., Kathe, M. V., Zeng, L., Luo, S., and Fan, L. S., “Iron-based Syngas Chemical Looping Process and Coal-direct Chemical Looping Process Development at Ohio State University,” Appl. Energy, Vol. 113, pp.1836-1845 (2014).
Turns S., “Introduction to Combustion,” Second edition, McGraw-Hill, New York, (2000).
Vassilev, S. V., Baxter, D., Andersen, L. K., and Vassileva, C. G., “An Overview of the Chemical Composition of Biomass,” Fuel, Vol. 89, pp. 913-933 (2010).
Wang, J., and Zhao, H., “Chemical Looping Dechlorination through Adsorbent-decorated Fe2O3/Al2O3 Oxygen Carriers,” Combust. Flame, Vol. 162, pp. 3503-3515 (2015).
Wang, P., and Massoudi, M., “Slag Behavior in Gasifiers Part I: Influence of Coal Properties and Gasification Conditions” Energy, Vol. 6, pp. 784–806 (2013).
Wu, H. C., Ku, Y., Tsai, H. H., Kuo, Y. L., and Tseng, Y. H., “Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-tube Moving Bed Reactor,” Chem. Eng. J., Vol. 280, pp. 82-89 (2015).
Wu, H. C. and Ku, Y., “Chemical Looping Gasification of Charcoal with Iron-Based Oxygen Carriers in an Annular Dual-tube Moving Bed Reactor,” Aerosol Air Qual. Res., Vol. 16, pp. 1093-1103 (2016).
Wu, F., Wang, S. J., Zhang, G., Zhu, P., Wang, Z. Y., Chen, S. T., and Zhou, Z., “Influence of Steel Industrial Wastes on Burnout Rate and NOx Release during the Pulverized Coal Catalytic Combustion,” J. Energy Inst., Vol. 87, pp. 134-139 (2014).
Yu, Z., Li, C., Jing, X., Zhang, Q., Wang, Z., Fang, Y., and Huang, J., “Catalytic Chemical Looping Combustion of Carbon with an Iron-based Oxygen Carrier Modified by K2CO3: Catalytic Mechanism and Multicycle Tests,” Fuel Process. Technol., Vol. 135, pp. 119-124 (2015).
Zafara, Q., Abad, A., Mattisson, T., Gevert, B., and Strand, M., “Reduction and Oxidation Kinetics of Mn3O4/Mg–ZrO2 Oxygen Carrier Particles for Chemical-looping Combustion,” Chem. Eng. Sci., Vol. 62, pp. 6556-6567 (2007).
Zhang, S., Saha, C., Yang, Y., Bhattacharya, S., and Xiao, R., “Use of Fe2O3-Containing Industrial Wastes as the Oxygen Carrier for Chemical-Looping Combustion of Coal: Effects of Pressure and Cycles,” Energy & Fuels, Vol. 25, pp. 4357-4366 (2011).
Zhu, M., Chen, S., Ma, S., and Xiang, W., “Carbon Formation on Iron-based Oxygen Carriers during CH4 Reduction Period in Chemical Looping Hydrogen Generation Process,” Chem. Eng. J., Vol. 325, pp. 322-331 (2017).

QR CODE