簡易檢索 / 詳目顯示

研究生: 黃翊軒
Yi-Syuan Huang
論文名稱: 鐵系載氧體應用於化學迴圈產氫移動床蒸汽反應器之評估研究
Applications of iron-based oxygen carriers on chemical looping hydrogen generation (CLHG) process in a moving bed reactor
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾堯宣
Yao-Hsuan Tseng
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 138
中文關鍵詞: 化學迴路產氫程序移動床蒸氣反應器鐵系載氧體濕式造粒法
外文關鍵詞: Chemical looping hydrogen generation process (CL, Moving bed steam reactor, Iron-based oxygen carrier, Wet granulation process
相關次數: 點閱:233下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的,以濕式造粒法改善載氧體制備流程,並評估所製備的載氧體之物理及化學性質,濕式造粒法為工業上於量產時常用之手段,以此法可製備得球型顆粒之載氧體,以減少載氧體於反應器間流動時所造成的磨耗損失,並於各項物理性及化學性質測試可知各項性質均已被優化改善。鐵系載氧體同時添加氧化鋁及氧化鈦兩種擔體,可製備得結合鐵鋁及鐵鈦兩種載氧體之優勢,發展出更有前瞻之材料,於各項測試中顯示鐵鋁鈦之各評估指標介於鐵鋁及鐵鈦之間。製備而得之鐵係載氧體應用於架設移動床式蒸氣反應器之化學迴路產氫程序之可行性評估。移動床蒸氣反應器系統是由移動床式蒸氣反應器與載氧體輸送單元組成,水蒸氣由自來水以注射幫浦進行進料。移動床式蒸氣反應器性能測試部分,以還原態鐵鋁載氧體在移動床式蒸氣反應器中於800-900oC下通入蒸氣進行氧化產生氫氣,當提供足量之蒸氣時可獲得較大之產氫量及載氧體轉化率,可以在長時間連續操作下達約1400 ml-H2/min之氫氣產生及82.11 ml-H2/g-OC之產氫量。以還原態鐵鋁鈦載氧體在移動床式蒸氣反應器中於800-900oC下通入蒸氣進行氧化產生氫氣,結果鐵鋁載氧體比較具有較佳之產氫量85.99 ml-H2/g-OC,然仍需克服載氧體於反應器管壁燒結團聚之現象。


    The oxygen carrier plays a key point in CLHG process, for the future development, wet granulation process was adopted for preparing oxygen carrier, the process could prepare sphere oxygen carriers to decrease the attrition and increase crush strength. Iron-based oxygen carrier supported on Al2O3 and TIO2 was evaluated. The results showed that the oxygen carrier could have the advantage of iron-based oxygen carrier supported on TiO2 or Al2O3.
    A moving bed steam reactor system for chemical looping hydrogen generation with FA323-S1 and FAT7212-S0 oxygen carrier was developed and operated. The system composed of a moving bed steam reactor with oxygen carrier and fuel transportation units. The moving bed steam reactor system was successfully set up and operated using FA323-S1 and FAT7212-S0 oxygen carriers. However, the FAT7212-S0 oxygen carrier showed agglomeration issue in each experiment, hence, the reactor must be modified for successfully operating the system with FAT7212-S0 oxygen carrier. The quality of hydrogen generation on FA323-S1 and FAT7212-S1 oxygen carriers was 82.11 and 85.99 ml-H2/g-OC during the CLHG process test, respectively. It showed that FAT7212-S0 was a potential material in CLHG process. Long-term integrity test was carried out in the moving bed steam reactor for generating hydrogen. A steady hydrogen production rate was achieved for FA323-S1-S oxygen carrier, and the experiment was continuously run with more than 6 hours.

    中文摘要 Abstract Acknowledgement Contents List of Figures List of Tables List of Symbols Chapter 1 Introduction 1.1 Background 1.2 Objectives and Scope Chapter 2 Literature and Review 2.1 Introduction of Chemical Looping Process (CLP) 2.1.1 Chemical Looping Combustion 2.1.2 Chemical Looping and Reforming and Hydrogen Generation 2.2 Introduction of Oxygen Carrier 2.2.1 Applications of Iron-based Oxygen Carrier 2.2.2 Apply Wet Granulation Process for Preparing Oxygen Carrier 2.3 Introduction of Various Systems for Chemical Looping Process 2.3.1 Fluidized Bed Reactor Systems 2.3.2 Moving Bed Reactor Systems Chapter 3 Experimental Apparatus and Procedures 3.1 Chemicals 3.2 Apparatus 3.3 Experimental Procedures 3.3.1 Experiment Framework 3.3.2 Preparation, TGA Experiments of Reactivity and Characterization Iron-based Oxygen Carriers 3.3.3 Set-up and Operation of the Reduction Process in Fixed Bed System and the CLHG Process in Moving Bed Reactor 3.4 Characterization Analysis 3.5 Data Evaluation Method Chapter 4 Results and Discussion 4.1 Background Experiment Oxygen Carrier 4.1.1 The Reactivity and Recyclability Test of Iron-based Oxygen Carriers 4.1.2 The Characterization of Iron-based Oxygen Carriers 4.1.3 The Crush Strength and Attrition of Iron-based Oxygen Carriers 4.1.4 The Reaction Temperature Condition with Iron-based Oxygen Carrier 4.1.5 The Reduced Condition of Iron-based Oxygen Carriers with H2 in Fixed Bed 4.2 Application of Iron-based Oxygen Carriers Supported on Aluminium in Chemical Looping Hydrogen Generation (CLHG) in a Moving Bed Reactor 4.2.1 Effect of Steam Flow Rate 4.2.2 Effect of Feeding Rate of FA323-S1 Oxygen Carriers 4.2.3 Effect of Reaction Temperature 4.2.4 Long-term Integrity Test in the Moving Bed Reactor 4.2.5 The Characterization of FA323-S1-S Oxygen Carriers 4.3 Application of Iron-based Oxygen Carriers supported on Aluminium and Titanium in Chemical Looping Hydrogen Generation (CLHG) in a Moving Bed Reactor 4.3.1 Effect of Steam Flow Rate 4.3.2 Effect of Feeding Rate of FAT7212-S0 Oxygen Carriers 4.3.3 Effect of Reaction Temperature 4.3.4 Long-term Integrity Test in the Moving Bed Reactor 4.3.5 The Characterization of Oxygen Carriers Chapter 5 Conclusions and Recommendations Reference Appendices

    Adánez-Rubio, I., Arjmand, M., Leion, H., Gayán, P., Abad, A., Mattisson, T., Lyngfelt, A., “Investigation of Combined Supports for Cu-based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU),” Energy Fuels. Vol. 27, pp. 3918-3927 (2013)
    Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F., “Progress in Chemical-Looping Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., Vol. 38, pp. 215-282 (2012).
    Adanez, J., Cuadrat, A., Abad, A., Gayan, P., de Diego, L.F. and Garcı´a-Labiano, F., “Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion,” Energy Fuels ., Vol. 24, pp.1402-1413 (2010).
    Bayham, S., Kim, H., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M., Chung, E., Wang, W., Wang, A., Majumder, A. and Fan, L.S., “Iron-based Coal Direct Chemical Looping Combustion Process: 200 h Continuous Operation of a 25 kWth Subpilot Unit,” Energy Fuel., Vol.27(3), pp.1347-56 (2013).
    Berguerand, N. and Lyngfelt, A., “Chemical Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit High Temperature Operation,” Energy Fuels, Vol. 23, pp.5257-5268 (2009).
    Cormos, C.C., “Biomass Direct Chemical Looping for Hydrogen and Power Co-Production: Process Configuration, Simulation, Thermal Integration and Techno-Economic Assessment,” Fuel Process. Technol., Vol. 137, pp. 16-23 (2015).
    Cho, W., Lee, D.Y., Seo, M.W., Kim, S.D., Kang, K.S., Bae, K.K., Kim, C.H., Jeong, S.U., Park, C.S., “Continuous Operation Characteristics of Chemical Looping Hydrogen Production System,” Applied Energy., Vo. l113 pp. 1667-1674 (2014)
    Cho, G.-C., Dodds, J., Santamarina, J.C. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands,” J. Geotech. Geoenviron. Eng., Vol. 132, pp. 591-602 (2006).
    Cao, Y. and Pan, W.P., “Investigation of Chemical Looping Combustion by Solid Fuels 1. Process Analysis,” Energy Fuels, Vol. 20, pp.1836-1844 (2006).
    Cabello, A., Dueso, C., García-Labiano, F., Gayán, P., Abad, A., de Diego, L. F. and Adánez, J., “Performance of a Highly Reactive Impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit,” Fuel., Vol. 121, pp. 117-125 (2014).
    Chang, C.W., “Study of CuO/ZrO2 Oxygen Carriers in Chemical Looping with Air Separation (CLAS) Process by a Moving Bed Reactor,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2014).
    Collot, A.G., “Matching gasification technologies to coal properties,” Int. J. Coal Geol., Vol.65, pp.191-212 (2006).
    Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L. and Tseng, Y.H., “Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion,” Energy Fuels,Vol.28, pp. 657-665 (2014).
    Chen, S., Shi, Q., Xue, Z., Sun, X. and Xiang, W., “Experimental Investigation of Chemical-Looping Hydrogen Generation Using Al2O3 or TiO2-Supported Iron Oxides in a Batch Fluidized Bed,” Int. J. Hydrog. Energy., Vol. 45, pp. 968-977 (2011).
    Cho, P., Mattisson, T. and Lyngfelt, A. “Carbon formation on nickel and iron oxide containing oxygen carriers for chemical-looping combustion,” Ind Eng Chem Res., Vol. 44, pp.668-676 (2005).
    Cuadrat, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L.F. and Adánez, J., “Ilmenite as Oxygen Carrier in a Chemical Looping Combustion System with Coal,” Energy Procedia., Vol. 4, pp.362-369 (2011).
    Dou, B., Song, Y., Wang, C., Chen, H., Yang, M., Xu, Y., “Hydrogen Production by Enhanced-Sorption Chemical Looping Steam Reforming of Glycerol in Moving-Bed Reactors,” Appl. Energy., Vol.130, pp. 342-349 ( 2014)
    Edrisi, A., Mansoori, Z., Dabir, B., “Using Three Chemical Looping Reactors in Ammonia Production Processe - A Novel Plant Configuration for a Green Production,” Int. J. Hydrogen Energy., Vol. 39, pp. 8271- 8282 (2014).
    Fan, L.S., “Chemical Looping Systems for Fossil Energy Conversions,” John Wiley & Sons Inc., Hoboken, New Jersey, USA (2010).
    Guan, Y.J., Chang J.A., Zhang, K., Wang, B.D., Sun, Q., “Three-Dimensional CFD Simulation of Hydrodynamics in an Interconnected Fluidized Bed for Chemical Looping Combustion,” Powder Technol., Vol.268, pp. 316-328 (2014).
    García-Labiano, F., García-Díez, E., De Diego, L.F., Serrano, A., Abad, A., Gayán, P., Adánez, J., Ruíz, J.A.C., “Syngas/H2 Production from Bioethanol in a Continuous Chemical-Looping Reforming Prototype,” Fuel Process. Technol., Vol. 137, pp. 24-30 (2015).
    Gu, H.M., Shen, L.H., Zhong, Z.P., Niu, X., Ge, H.J., Zhou,Y.F., Xiao, S., “Potassium-Modified Iron Ore as Oxygen Carrier for Coal Chemical Looping Combustion: Continuous Test in 1 kW Reactor,” Ind. Eng. Chem. Res., , Vol. 53, pp.13006-13015 (2014).
    Galinsky, N.L., Shafiefarhood, A., Chen, Y., Neal, L., Li, F., “Effect of Support on Redox Stability of Iron Oxide for Chemical Looping Conversion of Methane,” Appl. Catal., B., Vol. 164, pp. 371-379 (2015).
    Gayán, P., Pans, M., Ortiz, M., Abad, A., de Diego, L. F., Ga`rcía-Labiano, F. and Adánez, J., “Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR–CLC system in a continuous CLC unit,” Fuel Process. Technol., Vol,96 pp.37-47 (2012).
    Ge, H.J., Shen, L.H., Gu, H.M. and Jiang, S.X., “Effect of Co-precipitation and Impregnation on K-decorated Fe2O3/Al2O3 Oxygen Carrier in Chemical Looping Combustion of Bituminous Coal,” Chem. Eng. J., Vol. 262, pp.1065-1076 (2015).
    Guo, L., Zhao, H.B., Ma, J.C., Mei, D.F. and Zheng, C.G., “Comparison of Large-Scale Production Methods of Fe2O3/Al2O3 Oxygen Carriers for Chemical-Looping Combustion,“ Chem. Eng. Technol., Vol. 37, pp.1211-1219 (2014).
    Hurst, S., “Production of Hydrogen by the Steam-iron Method,” J. Am. Oil Chem. Soc. Vol. 16, pp. 29-35 (1939).
    Ishida, M., Zheng, D. and Akehata, T., “Evaluation of a Chemical Looping Combustion Power Generation System by Graphic Exergy Process Analysis,” Energy Fuels., Vol. 20, pp.1836-1844 (1987).
    Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J., “Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review,” Powder Technol., Vol. 117, pp.3-39 (2001)
    Johansson, M., Mattisson, T. and Lyngfelt, A., “Comparison of Oxygen Carriers for Chemical Looping Combustion,” Thermal Sci., Vol. 10, pp.93-107 (2006).
    Jerndal, E., Mattisson T. and Lyngfelt, A., Thermal analysis of chemical-looping combustion,” Chem Eng Res Des, Vol. 84, pp.795-806 (2006).
    Johansson, M., Mattisson, T. and Lyagfelt, A., “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-looping Combustor,” Ind. Eng. Chem. Res., Vol. 45, pp.5911-5919 (2006).
    Kosaka, F., Hatano, H., Oshima, Y., Otomo, J., “Iron Oxide Redox Reaction with Oxide Ion Conducting Supports for Hydrogen Production and Storage Systems,” Chem. Eng. Sci., Vol.123, pp. 380-387 (2015).
    Kim, H., Wang, D., Zeng, L., Bayham, S., Tong A., Chung, E., Kathe, M., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D. and Fan, L.S., “Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-kWth Sub-pilot Unit,” Fuel., Vol. 108, pp.370-84 (2013).
    Karimi, E., Forutan, H. R., Saidi, M., Rahimpour, M. R. and Shariati, A., “Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support,” Energy Fuels, Vol. 28, pp.2811-2820 (2014).
    Ku, Y., Wu, H.C., Chiu, P.C., Tseng, Y.H. and Kuo, Y.L., “Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carrier,” Appl. Energy, Vol. 113, pp.1909-1915 (2014a).
    Ku, Y., Liu, Y.C., Chiu, P.C., Kuo, Y.L. and Tseng, Y.H., “Mechanism of Pseudobrookite as Oxygen Carrier for Chemical Looping Process and Evaluation for H2 Generation,” Ceram. Int., Vol. 40, pp.4599-4605 (2014b).
    Kuo, Y.L., Hsu, W.M., Chiu, P.C., Tseng, Y.H. and Ku, Y. “Assessment of Nickel Ferrite as Oxygen Carriers for Chemical Looping Process,” Ceram. Int., Vol. 39, pp.5459-5465 (2013).
    Lee, D.Y., Seo, M.W., Nguyen, T.D.B., Cho, W.C., Kim, S.D., “Solid Circulation Characteristics of the Three-Reactor Chemical-Looping Process for Hydrogen Production,” Int. J. Hydrogen Energy., Vol. 39, pp.14546-14556 (2014).
    Luo, M., Wang, S., Zhu, J., Wang, L., Lv, M., “Capture of CO2 from Coal using Chemical-Looping Combustion: Process Simulation,” Korean J. Chem. Eng., Vol. 32, pp. 373-382 (2015).
    Luo, S., Bayham S., Zeng, L., McGiveron, O., Chung, E., Majumder, A. and Fan, L.S., “Conversion of Metallurgical Coke and Coal Using a Coal Direct Chemical Looping (CDCL) Moving Bed Reactor,” Appl. Energy., Vol.118, pp.300-308 (2014).
    Lewis, W.K. and Gilliland, E.R., “Production of Pure Carbon Dioxide,” U.S. Patent., Vol. 2,665 pp.972 (1954).
    Lo, M.C., “Composite Fe-Ti Based Oxygen Carrier for Chemical Looping Combustion and Hydrogen Generation,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2014).
    Li, F. and Fan, L.S., “Clean Coal Conversion Process,” Energy Environ. Sci., Vol.1, pp.248-267 (2008).
    Li, F., Kim, H.R., Sridhar, D., Wang, F., Zeng, L., Chen, J. and Fan, L.S., “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, Vol. 23, pp. 4182-4189 (2009).
    Leion, H., Lyngfelt, A., Johansson, M., Jerndal, E. and Mattisson, T., “The use of Ilmenite as an Oxygen Carrier in Chemical-looping Combustion,” Chem. Eng. Res. Des., Vol. 86, pp. 1017-1026 (2008).
    Mattisson, T., Johansson, M., Lyngfelt, A., “The Use of NiO as an Oxygen Carrier in Chemical-Looping Combustion,” Fuel, Vol. 85, pp. 736-747 (2006).
    Mattisson, T., Jardnas, A. and Lyngfelt, A., “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-looping Combustion,” Energy Fuels, Vol. 17, pp.643-651 (2003).
    Markström, P., Linderholm, C., Lyngfelt , A., “Operation of a 100 kW Chemical-Looping Combustor with Mexican Petroleum Coke and Cerrejón Coal,” Appl. Energy., Vol.113, pp.1830-1835 (2014).
    Moldenhauer, P., Rydén, M., Mattisson, T., Hoteit, A., Jamal, A., Lyngfelt, A., “Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant,” Energy Fuels., Vol. 28, pp.5978-5987 (2014).
    Mendiara, T., de Diego, L.F., García-Labiano, F., Gayán, P., Abad, A., Adánez, J., “On the use of a Highly Reactive Iron Ore in Chemical Looping Combustion of Different Coals”, Fuel., Vol. 126, pp. 239-247 (2014).
    Momirlana M, and Veziroglu TN., “The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Plane,” Int J Hydrogen Energy.,Vol. ;30, pp.795-802 (2005).
    Mattisson, T. and Lyngfelt, A., “Applications of Chemical-Looping Combustion with Capture of CO2,” In: Proc. 2nd Nordic Minisymposium on Carbon Dioxide Capture and Storage. Göteborg, Sweden; (2001).
    Mattisson, T., Johansson, M. and Lyngfelt, A., “Multicycle Reduction and Oxidation of Iron Oxide Particles-Application to Chemical-Looping Combustion,” Energy Fuels, Vol. 18, pp. 628-637 (2004).
    National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory: Global Monitoring Division. (http://www.esrl.noaa.gov/)
    Peng, Z., Doroodchi, E., Alghamdi, Y.A., Shah, K., Luo, C., Moghtaderi, B., “CFD–DEM Simulation of Solid Circulation Rate in the Cold Flow Model of Chemical Looping Systems,” Chem. Eng. Res. Des., Vol. 95, pp. 262-280 (2015).
    Pans, M.A., Gayán, P., de Diego, L.F., García-Labiano, F., Abad, A., Adánez, J., “Performance of a Low-cost Iron Ore as an Oxygen Carrier for Chemical Looping Combustion of Gaseous Fuels,” Chem. Eng. Res. Des., Vol. 93, pp.736-746 (2015).
    Penthor, S., Zerobin, F., Mayer, K., Pröll, T., Hofbauer, H., “Investigation of the Performance of a Copper Based Oxygen Carrier for Chemical Looping Combustion in a 120kW Pilot Plant for Gaseous Fuels,” Appl. Energy., Vol. 145, pp. 52-59 ( 2015).
    Porrazzo, R., White, G., Ocone, R., “Aspen Plus Simulations of Fluidised Beds for Chemical Looping Combustion,” Fuel., Vol. 136, pp. 46-56 (2014)
    Qin, W., Wang, Y., Lin, C., Hu, X., Dong, C., “Possibility of Morphological Control to Improve the Activity of Oxygen Carriers for Chemical Looping Combustion,” Energy Fuels., Vol. 29, pp. 1210-1218 (2015).
    Sridhar, D., Tong, A., Kim, H., Zeng L., Li, F. and Fan, L-S., “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Sub-pilot Unit,” Energy Fuel., Vol.26(4), pp.2292-302 (2012).
    Statens energimyndighet. Energiläget 2010.
    Sahir, A.H., “Process Modeling Aspects of Chemical Looping with Oxygen Uncoupling and Chemical Looping Combustion for Solid Fuels,” Philosophy Thesis in Department of Chemical Engineering, University of Utah, Salt Lake City, The USA (2013).
    Tong, A., Bayham, S., Kathe, M.V., Zeng, L., Luo, S.W., Fan, L.S., “Iron-based Syngas Chemical Looping Process and Coal-Direct Chemical Looping Process Development at Ohio State University,” Appl. Energy., Vol. 113, pp. 1836-1845 (2014).
    Tong, A., Sridhar, D., Sun, Z., Kim, H., Zeng, L., Wang, F., Wang, D., Kathe, M., Luo, S., Sun, Y. and Fan, L.S., “Continuous High Purity Hydrogen Generation from a Syngas Chemical Looping 25 kWth Sub-pilot Unit with 100% Carbon Capture,” Fuel., Vol.103, pp.495-505 (2013).
    Tseng, Y.H., Ma, J.L., Chiu, P.C., Kuo, Y.L. and Ku, Y., “Preparation of Composite Nickle-iron Oxide as Highly Reactive Oxygen Carrier for Chemical-looping Combustion Process,” J. Taiwan Inst. Chem. Eng., Vol. 45, pp.174-179, (2014).
    Wang, S., Yan, L., Zhao, F., Lu, H., Sun, L., Zhang, Q., “Numerical Simulation of Hydrogen Production via Chemical Looping Reforming in Interconnected Fluidized Bed Reactor,” Ind. Eng. Chem. Res., Vol. 53 (11), pp. 4182-4191 (2014).
    Wei, G.Q., He, F., Huang, Z., Zheng, A.Q., Zhao, K., Li, H.B., “Continuous Operation of a 10 kWth Chemical Looping Integrated Fluidized Bed Reactor for Gasifying Biomass Using an Iron-Based Oxygen Carrier,” Energy Fuels.,Vol. 29, pp. 233-241 (2015).
    Xiang, W. and Wang, S., “Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance,” Energy Fuels., Vol. 22, pp.961-966 (2008).
    Xiao, R., Zhang, S., Peng, S., Shen, D., Liu, K., “Use of Heavy Fraction of Bio-oil as Fuel for Hydrogen Production in Iron-based Chemical Looping Process,” Int. J. Hydrogen Energy., Vol. 39, pp. 19955-19969 (2014).
    Zafar, Q., Mattisson, T. and Gevert, B., “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support,” Ind. Eng. Chem. Res., Vol. 44, pp.3485-3496 (2005).
    Zafar, Q., Mattisson, T. and Gevert, B., “Redox Investigation of Some Oxides of Transition-state Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy Fuels, Vol. 20, pp. 34-44 (2006).
    Zeng, L., Kathe, M., Chung, E. and Fan, L.S., “Some Remarks on Direct Solid Fuel Combustion Using Chemical Looping Processes,” Curr.Opin. Chem. Eng., Vol. 1, pp.290-295( 2012).
    Zhang, Y.X., Doroodchi, E., Moghtaderi, B., “Utilization of Ventilation Air Methane as an Oxidizing Agent in Chemical Looping Combustion,” Energy Convers. Manage., Vol. 85, pp. 839-847 (2014).

    無法下載圖示 全文公開日期 2020/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE