簡易檢索 / 詳目顯示

研究生: 許家銓
CHIA-CHUAN HSU
論文名稱: 稻殼灰燼製備鐵系載氧體利用於化學迴路 燃燒程序與交聯式流體化床設計之研究
Study on Application of Rice Husk Ash as Inert Support for Iron-base Oxygen Carrier in Chemical Looping Combustion Process and the Design of Interconnected Fluidized Bed
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 121
中文關鍵詞: 化學迴路燃燒程序稻殼灰金屬改質交聯式流體化床
外文關鍵詞: Chemical loop combustion process, inter-connected fluidized bed, kinetic.
相關次數: 點閱:291下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討應用稻殼灰製備載氧體之可行性評估與交聯式流體化床設計。以稻殼灰燼製成鐵矽載氧體可達到農業廢棄物再利用與降低化學迴路程序的載氧體製備成本的目的,並添加鹼金屬與鹼土金屬修飾載氧體,可進一步增進其在化學迴路燃燒程序之反應活性。經由機械混合法混合鐵、稻殼灰與改質金屬後壓錠造粒,使用0.177-0.297 mm的粉體於半套式流體化床進行化學迴路燃燒反應。研究中分析鐵矽化合物的生成與特性,並摻混氧化鈣進行改質以增進反應活性。利用熱重分析儀測試反應活性,分別以10%合成氣進行還原、空氣進行氧化,以初步評估載氧體之反應特性。最後於900℃下,在流體化床進行多迴路測試觀察鐵矽鈣載氧體穩定性,顯示鐵矽鈣載氧體具有穩定且良好的反應性。
    動力學部分,實驗結果顯示系統在短時間內為擬穩態的連續式攪拌槽反應器,依據此設計方程式來擬合實驗數據,計算還原反應的動力學參數。結果顯示還原反應為擴散控制反應,此時氧化鐵的反應級數為2,其為影響還原速率的主要因素。
    交聯式流體化床設計,在本研究中主要進行冷模的設計與組裝,由燃料反應器、氣體密封迴路、空氣反應器與旋風分離器所構成1 kW的反應系統,藉由分析各單位的壓力降,計算出系統內的氣固流量,並探討氣體流速與固體量對於運行的影響。在燃料反應、氣體密封迴路與空氣反應器流量依序為10 L/min、6 L/min與20 L/min時,可達穩定運行的狀態。氣體流速與固體量對於運行的影響


    In this work, the feasibility of the application of rice husk ash as inert support for iron-base oxygen carrier for chemical looping combustion (CLC) process and the design of inter-connected fluidized bed were investigated, respectively. The purposes of application of husk ash are the reuse of agricultural waste and the decrease in manufacture cost of oxygen carrier. The iron-based oxygen carriers with particle size between 0.177-0.297 mm were obtained via mechanical mixing, pelleting, and crushing processes, respectively. The properties of ferrosilicon oxide during CLC reaction were characterized and the effects of metal additives of oxygen carrier on CLC activity were investigated. The redox activities of oxygen carrier were first evaluated in a thermo-gravimetric analysis (TGA) system, where 10 vol% of syngas and air were applied as reductant and oxidant, respectively. The ferrosilicon oxygen carrier was further tested in a fluidized bed at 900℃ for 11h continuously. The results indicated that this oxygen carrier exhibits good reactivity and thermal stability.
    In part of CLC kinetic analysis, the experiment data in reduction stage indicated the reaction behavior is similar to a steady state of continuous stirred tank reactor in the beginning period. The design equation is thus used to fit the experimental data for the estimation of kinetic parameters. The results showed the reduction from Fe2O3 to Fe2O3 in CO atmosphere is a diffusion-controlled reaction. The reaction order of Fe2O3 is 2 and the reduction rate is majorly affected by the concentration of oxygen carrier.
    The third part of this work was focused on the design of inter-connected fluidized bed for CLC system. A cold model of 1 kW system is designed and established completely, consisting fuel reactor (FR), loop-seal (LS), air reaction (AR), and cyclone. The effects of gas flow rate and solid content on circulation of oxygen carrier were studied by analyzing the pressure drop of each part. A stable circulation of oxygen carried can be reached with applying 10, 6, and 20 L/min in FR, SL, and AR, respectively.

    摘要 I 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 化學迴路燃燒程序 3 1.3 載氧體性能選擇 5 1.4 反應器設計與動力學分析 9 1.5 研究動機 15 第二章 文獻回顧 16 2.1 稻殼灰燼特性 16 2.2 鐵矽化合物、SiO2擔體與鐵硫化合物應用於化學迴路 18 2.3 化學迴路動力學模式 25 2.4 交聯式流體化床冷模設計 27 第三章 研究方法 30 3.1 實驗規劃 30 3.2 實驗藥品 31 3.3.實驗儀器 33 3.4.藥品配置 38 3.4.1 稻殼處理 38 3.4.2 機械混合法製備金屬改質載氧體 38 3.4.3 濕式含浸法製備金屬改質載氧體 41 3.5.實驗步驟 41 3.5.1 熱重分析儀反應系統 41 3.5.2 流體化床反應器 42 3.5.3 交聯式流體化床冷態模型 43 第四章 結果與討論 46 4.1鐵矽載氧體開發 46 4.1.1 元素成分分析 46 4.1.2 晶相結構分析 47 4.1.3 機械強度分析 49 4.1.4 表面形貌及比表面積分析 51 4.1.5 鐵系載氧體穩定性討論 52 4.1.6 鐵矽與其金屬改質載氧體反應性測試 53 4.2流體化床動力學分析 66 4.2.1 實驗數據處理與模型假設 68 4.2.2 反應常數與反應級數 71 4.2.3 滯留時間與鐵礦重量 75 4.3交聯式流體化床 76 4.3.1 壓降分布 77 4.3.2 設計原理 81 4.3.3 燃料反應器、空氣反應器與氣體密封迴路操作參數 83 4.3.4 旋風分離器與氣體密封迴路 87 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來與展望 91 參考文獻 94 附錄 97

    1 Mearns, Euan. Global Energy Trends - BP Statistical Review 2014, <http://www.oilvoice.com/n/Global-Energy-Trends-BP-Statistical-Review-2014/5ba5a0483d85.aspx> (2014).
    2 L., Hardin & Payne, J. Carbon Management. Oak Ridge National Laboratory Rivew 2, 12-13 (2000).
    3 我國燃燒CO2排放統計, <http://verity.erl.itri.org.tw/EIGIC/index.php?option=com_content&view=article&id=45&Itemid=29> (2011)
    4 徐恆文. 我國碳捕集技術介紹與展望, (2011).
    5 周楚洋. 農業廢棄物處理之回顧與前瞻. 高知武教授紀念研討會論文集, 121-130 (1998).
    6 朱敬平. 化學迴路燃燒技術發展現況簡介. 中興工程季刊 110, 63-73 (2011).
    7 Fan, L. S. Chemical looping systens for fossil energy conversions. John Wiley & Sons (2010).
    8 Bischi, A., Langrgen, Ø, Saanum, I., Bakken, J., Seljeskog, M., Bysveen, M., Morin, J. X. & Bolland, O. Design study of a 150kWth double loop circulating fluidized bed reactor system for chemical looping combustion with focus on industrial applicability and pressurization. International Journal of Greenhouse Gas Control 5, 467-474, (2011).
    9 Chiesa, Paolo, Lozza, Giovanni, Malandrino, Alberto, Romano, Matteo , Piccolo, Vincenzo. Three-reactors chemical looping process for hydrogen production. International Journal of Hydrogen Energy 33, 2233-2245, (2008).
    10 Kunii, Daizo. in Fluidization Engineering (Second Edition) xvii-xviii (Butterworth-Heinemann, 1991).
    11 潘雯瑞 , 任建兴. 秸生物质燃料燃烧特性分析. 上海電力學院學報 26, 131-134 (2010).
    12 Yalçin, N. , Sevinç, V. Studies on silica obtained from rice husk. Ceramics International 27, 219-224, (2001).
    13 Yu, Qijun, Sawayama, K., Sugita, S., Shoya, M. , Isojima, Y. The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product. Cement and Concrete Research 29, 37-43, (1999).
    14 Krishnarao, R. V. , Subrahmanyam, J. Formation of SiC from rice husk silica-carbon black mixture: Effect of rapid heating. Ceramics International 22, 489-492, (1996).
    15 FactSage Database Documentation, <http://www.crct.polymtl.ca/fact/documentation/>
    16 Zafar, Qamar, Mattisson, Tobias , Gevert, Börje. Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4. Energy & Fuels 20, 34-44, (2006).
    17 Adánez, J., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A. , Palacios, J. M. Selection of Oxygen Carriers for Chemical-Looping Combustion. Energy & Fuels 18, 371-377, (2004).
    18 Song Hui, Doroodchi, Elham , Moghtaderi, Behdad. Redox Characteristics of Fe–Ni/SiO2 Bimetallic Oxygen Carriers in CO under Conditions Pertinent to Chemical Looping Combustion. Energy & Fuels 26, 75-84, (2012).
    19 Källén, Malin, Hallberg, Peter, Rydén, Magnus, Mattisson, Tobias , Lyngfelt, Anders. Combined oxides of iron, manganese and silica as oxygen carriers for chemical-looping combustion. Fuel Processing Technology 124, 87-96, (2014).
    20 Gu Haiming, Shen Laihong, Xiao Jun, Zhang Siwen, Song Tao , Chen Dingqian. Evaluation of the Effect of Sulfur on Iron-Ore Oxygen Carrier in Chemical-Looping Combustion. Industrial & Engineering Chemistry Research 52, 1795-1805, (2013).
    21 Song Tao, Zheng Min, Shen Laihong, Zhang Tao, Niu Xin , Xiao Jun. Mechanism Investigation of Enhancing Reaction Performance with CaSO4/Fe2O3 Oxygen Carrier in Chemical-Looping Combustion of Coal. Industrial & Engineering Chemistry Research 52, 4059-4071, (2013).
    22 Luo Ming, Wang Shu Zhong, Wang Long Fei , Liu Ming Ming. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion. Journal of Power Sources 270, 434-440, (2014).
    23 Sedor, K. E., Hossain, M. M. , De Lasa, H. I. Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion. Canadian Journal of Chemical Engineering 86, 323-334, (2008).
    24 Shan ShaoYun, Jia Qing Ming, Jiang Li Hong, Li Qin Chao, Wang Ya Ming , Peng Jin Hui. Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture. Chin. Sci. Bull. 57, 2475-2479, (2012).
    25 顾海明, 吴家桦, 沈来宏,肖军. 基于镍基载氧体的串行流化床煤化学链燃烧实验. 2015 41, 8 (2015).
    26 錢建嵩, 黃正忠, 楊玉樹, 歐建志, 張瑞顯, 吳耿東, 游逸將. 流體化床技術. 高立圖書, (2011).
    27 Basu, P. , Cheng, L. An Analysis of Loop Seal Operations in a Circulating Fluidized Bed. Chemical Engineering Research and Design 78, 991-998, (2000).
    28 Yazdanpanah, M. M., Forret, A., Gauthier, T. , Delebarre, A. An experimental investigation of loop-seal operation in an interconnected circulating fluidized bed system. Powder Technology 237, 266-275, (2013).
    29 Ismail, Mohammad, Liu, Wen , Scott, Stuart A. The performance of Fe2O3-CaO Oxygen Carriers and the Interaction of Iron Oxides with CaO during Chemical Looping Combustion and H2 production. Energy Procedia 63, 87-97, (2014).
    30 Liao, Ya long; Chai, Xi juan; Li, Jiang tao; Xu, Fu chang; Li, Dong bo. Study on the Reduction of Ferrous Compounds Disseminated in Fayalite, Vitreous and Magnetite in Dumped Copper Slag by Means of Carbonthermic Method. International Conference on Chemical Engineering and Advanced Materials (2011).
    31 Johansson, M., Mattisson, T. , Lyngfelt, A. Investigation of Fe2O3 with MgAl2O 4 for chemical-looping combustion. Industrial and Engineering Chemistry Research 43, 6978-6987 (2004).

    無法下載圖示 全文公開日期 2020/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE