簡易檢索 / 詳目顯示

研究生: 戴楷錦
Kai-Jin Dai
論文名稱: 化學迴路程序基於計算流體力學與冷模實驗之多階循環流體化床設計
Design of a Multi-stage Circulation Fluidized Bed via CFD & Cold Model Experiments for Chemical-Looping Process
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 李豪業
Hao-Yeh Lee
曾堯宣
Yao-Hsuan Tseng
顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 149
中文關鍵詞: 化學迴路技術交聯式流體化床計算機流體力學
外文關鍵詞: chemical looping process, circulation fluidized bed, computational fluid dynamics
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用計算機輔助設計一組運用於化學迴路程序,100 kW等級之多階式循環流體化床系統。首先利用由拉-由拉雙相流方法於二維模擬中發展出多階式的篩板與降流管結構後,利用三維模擬方法將裝置轉換為可製作的規格品並進行細節調整。本研究在設計的過程中針對以往載氧體滯留時間不足以及燃料反應器中的氣體竄混至旋風分離器的問題進行了針對性的優化。藉由多階篩板結構解決大型氣體塊泡的生成與載氧體淘失之兩大問題,並且以對開式降流板設計,使載氧體在燃料反應器中的滯留時間大幅提升。而燃料反應器中的氣體竄混問題則藉由旋風分離器底部的特殊設計,使得進入燃料反應器中的載氧體自動在旋風分離器底部的降流管形成料封後得到解決。而以往的研究中極為困擾的旋風分離器設計問題亦使用Aspen Plus中的固體單元模組得到系統性的開發與設計。為了印證系統的可靠度,在顆粒流場模擬的輔助下,本研究製作了一組反應器之冷態模型,並且確認了系統運作的細節參數,最終製成了一組可以承受100 kW相當風量等級之多階式循環流體化床反應器冷態模型。
    本研究利用冷態模型進行性能驗證的結果後發現,該系統可以利用調整旋風分離器底部降流管的形狀與長度,將載氧體總循環量控制於0至10 kg/min 之間,並且利用自身形成的料封將燃料反應器內的氣體洩漏量減少至3% 以下。而利用顆粒流場的模擬,可以確認當系統操作於150 kW之相當風量時仍然可以維持約6 kg/hr之載氧體淘失量。而冷模實驗的結果亦顯示了在多階式的燃料反應器運作的過程中,可以利用壓力響應來判定載氧體的流體化情形並作為自動化控制的重要依據。


    The target of this study is to build up a 100 kW chemical looping process (CLP) via multi-stage circulating fluidized bed system with computer-aided design. At the first, the multi-stage sieve plate and downcomer structure are developed by the 2-D CFD euler-euler two-phase simulation method. After that, the device is converted into commercial specification for units by using 3-D simulation. In this study, the design procedure is focused on how to increase the retention time of the oxygen carrier (OC) and overcome the issue of gas leakage into cyclone from the fuel reactor (FR). The multi-stage sieve plate structure is a good arrangement to decrease the slug generation and OC elutriation. Based on the above design, the retention time of the OC in the FR is greatly improved by alternative downcomer on each stage. The gas leakage from the FR can be reduced by the special design at the downcomer of the cyclone, and the gas seal will automatically form while OC entering into the FR. Furthermore, the cyclone is designed systematically by using another commercial software, Aspen Plus. In order to test the reliability of the system, an experiment of the cold model reactor is built to confirm the detailed parameters of operation from the result of particle flow simulation. Finally, a multi-stage circulating fluidized bed reactor cold model has established and it could withstand the equivalent capacity of 100 kW CLP. The results of the cold model experiment show that the circulation rate of the OC can be controlled between 0 and 10 kg/min by adjusting the configuration of cyclone downcomer. Moreover, the gas leakage amount in FR is less than 3% while a gas seal formed in the cyclone downcomer. And only 6 kg/hr OC elutriation is found by the particle flow simulation while the system at equivalent capacity of 150 kW CLP condition. The results of the cold model experiment also show that the pressure response on each stage of FR can be used to determine the fluidization states of the OC and provide an important basis for automatic control setting.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 1.3. 組織章節 3 第二章 文獻回顧 4 2.1. 化學迴路技術 4 2.2. 交聯式流體化床 7 2.3. 旋風分離器 13 2.4. 計算機流體力學 17 2.5. 氣-固兩相流計算模型 17 2.6. 顆粒流場模擬 20 第三章 燃料反應器設計 22 3.1. 前言 22 3.2 單床放大 25 3.3 多階隔板設計 30 3.4 多階篩板設計 35 3.5 多階篩板加入降流管設計 39 3.6 多階篩板降流管變開口設計 44 3.7 各模擬案例比較 47 第四章 實體化設計與三維模擬 50 4.1. 實體化設計 50 4.2. 旋風分離器設計 55 4.3. 整廠設計與最終系統 59 4.4 三維CFD模擬 61 4.5 顆粒流場模擬結果 75 4.6. 鐵礦石與石英砂之模擬差異 88 第五章 冷模實驗與模擬驗證 95 5.1 實驗設備 95 5.2 壓力響應實驗 97 5.3 氣體隔絕效果 105 5.4 料封幾何形狀之影響 112 5.5 側流對壓力響應之影響 115 5.6 CFD模擬結果對照 122 5.7 PLC自動控制評估 128 第六章 結論與未來展望 129 參考文獻 131

    [1] Adanez, J.; Abad, A.; Garcia-Labiano,F.; Gayan, P.; de Diego, L. F. Progress in Chemical-Looping Combustion and Reforming Technologies. Prog. Energy. Combust. 38, 215-282. (2012).
    [2] Tong, A.; Bayham, S.; Kathe; M. V., Zeng; L., Luo, S.; Fan, L. S. Iron-Based Syngas Chemical Looping Process and Coal-Direct Chemical Looping Process Development at Ohio State University. 2nd International Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. (2012).
    [3] Kunii, D.; Levenspiel, O. Fluidization Engineering, Butterworth-Heinemann, Boston. (1968).
    [4] Richter, H. J.; Knoche, K. F. ReVersibility of Combustion Process. ACS Symposium Series, ACS: Washington, 71-85. (1983).
    [5] Fan, L. S. Chemical Looping Systems for Fossil Energy Conversions. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. (2010).
    [6] Markström, P.; Linderholm, C.; Lyngfelt, A. Operation of a 100 kW Chemical-Looping Combustor with Mexican Petroleum Coke and Cerrejón Coal. 2nd International Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. (2012).
    [7] Song, T.; Shen, L. H. Review of Reactor for Chemical Looping Combustion of Solid Fuels. Int. J. Greenh. Gas. Con., 76, 92-110. (2018).
    [8] Geldart, D. Types of Gas Fluidization, Powder Technology, 7, 285-292. (1973).
    [9] Aspen Tech. Aspen Plus V10 Help. Cyclone Dimensions. (2017).
    [10] Rosin, P.; Rammler, E.; Intelmann, W. Principles and Limits of Cyclone Dust Removal. Zeit. Ver. Deutscher Ing., 76, 433-437. (1932).
    [11] Shepherd, G. B.; Lapple, C. E. Flow Pattern and Pressure Drop in Cyclone Dust Collectors. Ind. Eng. Chem., 31, 972-984. (1939).
    [12] Lapple, C. E. Processed Use Many Collector Types. Chemical Engineering, 58, 144-151. (1950).
    [13] Stairmand, C. J. The Design and Performance of Cyclone Separators. Trans IChemE, 29, 356. (1951).
    [14] Leith, D.; Licht, W. The Collection Efficiency of Cyclone Type Particle Collectors: A New Theoretical Approach. AIChE Symposium Series, 68, 196-206. (1972).
    [15] Muschelknautz, E.; Greif, V.; Trefz, M. Zyklone zum Abscheidung von Feststoffen aus Gasen. VDI-Wärmeatlas 10. überarbeitete und erweiterte Auflage, Lcd 1. (2006).
    [16] Hoffmann, A. C.; Stein, L. E. Gas Cyclones and Swirl Tubes. Principles, Design and Operation. Springer-Verlag Berlin Heidelberg GmbH. (2002).
    [17] Wen, C. Y.; Yu, Y. H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Series, 62, 100-111. (1966).
    [18] Gidaspow, D. Hydrodynamics of Fiuidizatlon and Heat Transfer: Supercomputer Modeling. Applied Mechanics Reviews. 39, 1-23. (1986).
    [19] Breault, R. W.; Weber, J.; Straub, D.; Bayham, S. Computational Fluid Dynamics Modeling of the Fuel Reactor in NETL's 50 kWth Chemical Looping Facility. J. Energy Resour. Technol, 139(4), 042211. (2017).
    [20] Gu, J.; Shao, Y.; Liu, X.; Zhong, W.; Yu, A. Modelling of Particle Flow in a Dual Circulation Fluidized Bed by A Eulerian-Lagrangian Approach. Chem. Eng. Sci., 192, 619-633. (2018).
    [21]錢建嵩,流體化床技術,高立圖書,臺北,(1992)。
    [22]黃郁茹,應用交聯式流體化床於化學迴圈燃燒程序之運行參數研究,碩士論文,國立臺灣科技大學化學工程所,臺北,臺灣,(2016)。
    [23]曾子維,交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究,碩士論文,國立臺灣科技大學化學工程所,臺北,臺灣,(2016)。
    [24]張晏銓,交聯式流體化床操作優化參數及反應參數之研究,碩士論文,國立臺灣科技大學化學工程所,臺北,臺灣,(2017)。
    [25]彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期,111-119,臺北,臺灣,(2014)。
    [26]袁竹林、朱立平、耿凡、彭正標,氣固兩相流動與數值模擬,東南大學出版社,南京,中國,(2012)。

    無法下載圖示 全文公開日期 2024/01/30 (校內網路)
    全文公開日期 2044/01/30 (校外網路)
    全文公開日期 2044/01/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE