簡易檢索 / 詳目顯示

研究生: 孫伯彰
Bo-jhang Sun
論文名稱: 新型電壓編碼畫素電路設計與模擬於主動有機發光二極體顯示器之應用
The Novel Voltage Programming Driving Pixel Circuit Design and Simulation for AMOLED Application
指導教授: 范慶麟
Ching-lin Fan
口試委員: 李志堅
none
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 151
中文關鍵詞: 電壓編碼畫素電路和主動式矩陣有機發光顯示器
外文關鍵詞: Voltage programming, and AMOLED
相關次數: 點閱:294下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期而言,主動矩陣式有機發光二極體(AMOLED)由於其非常優異的特性而受到市場上相當的矚目,例如,高亮度、輕質量、快的反應速度和廣視角等等的優勢。低溫多晶矽薄膜電晶體是被廣泛的應用於當主動矩陣式有機發光二極體中設計的驅動元件由於其相當高的電流驅動能力。當電子移動率較高時,在一個給定的畫素設計面積時將可以獲得較大的開口率,尤其是當應用在下發光式結構設計,或是在一個給定的開口率時將可以獲得較高的解析度,於是可以用來設計更高畫質的顯示器。更可以用來將原有的一些外部電路進一步的整合於面板內,制造出更輕質便利且美觀的顯示器。
        然而,在實際上,低溫多晶矽薄膜電晶體因為在製程中經過分子雷射的退火再結晶會導致一些電性上的不均勻,這是一個非常嚴重且不可避免的問題。在傳統的2T1C畫素電路中,便可以很清楚的發現由於以上電性的問題造成全畫面影像的不均勻和品質的衰退。且當有機發光二極體經過長時間的操作,會使其造成內部結晶造成一些亮度衰退,而這也會造成顯示器畫面品質的影響。
        因此,我們發表了兩個新型的電壓編碼補償的畫素電路,一個為5T1C一個為6T1C,並且這兩個電路都可以針對以上的電性衰退進行有效的補償。而電路也已經經由AIM-SPICE軟體的驗證和模擬。
        在5T1C畫素電路中,經由軟體的模擬驗證可得知其平均電流錯誤率在驅動元件臨界電壓偏移±0.33伏特下約為0.527%,其平均電流非均勻指數在驅動元件臨界電壓偏移±0.33伏特下約為0.895%還有其平均電流錯誤率在發光元件臨界電壓偏移+0.33伏特下約為6.033%,尤以上數據顯示不管驅動元件和發光元件已經發生衰退且電性不均勻情況下,其輸出的有機發光二極體電流可以穩定的被控制。
        在6T1C畫素電路中,經由軟體的模擬驗證可得知其平均電流錯誤率在驅動元件臨界電壓偏移±0.33伏特下約為0.554%,其平均電流非均勻指數在驅動元件臨界電壓偏移±0.33伏特下約為1.099%還有其平均電流錯誤率在發光元件臨界電壓偏移+0.33伏特下約為5.912%,尤以上數據顯示不管驅動元件和發光元件已經發生衰退且電性不均勻情況下,其輸出的有機發光二極體電流可以穩定的被控制。
        尤以上的結果顯示,由於有機發光二極體是一個電流控制元件,所以其發光亮度和輸出的電流是呈現正相關對比的,我們可以得知經由去補償驅動元件和發光元件的電性而達到了預期的顯示畫面品質。因此,我們肯定的相信在此論文所發表的兩個新型畫素電路設計是有著相當不錯的穩定電流驅動能力且也是相當適合於應用在大尺寸和高解析度的主動式有激發光二極體顯示器面板中。


    Recently, active matrix organic light-emitting diode (AMOLED) has attracted a much attention due to high brightness, light weight, fast response time, and wide viewing angle. Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (LTPS-TFTs) have been widely considered for pixel elements for AMOLED duo to their high current driving capability. The high electron mobility, this leads to a larger aperture ratio for a given pixel size, especial for a bottom emission OLED structure, or enables a higher resolution display for a given aperture ratio, resulting in better image quality. Furthermore, a very lightweight display with few external interconnections is possible, as all peripheral circuits, pixel driver circuits and light emission devices are integrated onto one single substrate.
    However, applying in actual pixel design, the LTPS-TFTs have some electrical issues such as the non-uniformity and maintenance of excimer laser annealing (ELA) facility is a severe problem. In the conventional two-TFTs pixel circuit for AMOLED, various driving TFT (DTFT) threshold voltages cause non-uniform gray-scale over the display area. And, the image quality must also consider the OLED electric degradation because of the long operation time will cause the brightness to drop off as the OLED threshold voltage degradation.
    Therefore, in order to overcome these problems, we have proposed two novel voltage-modulated structures for AMOLED pixel circuit as 5T1C and 6T1C, which can compensate both the DTFT threshold voltage deviation and OLED degradation. The proposed circuit is also verified by SPICE simulator.
    In the 5T1C simulation results show that the average OLED current error rate under ΔVTH = ±0.33 V is 0.527%, the average OLED current non-uniformity under ΔVTH = ±0.33 V is 0.895%, and the average OLED current error rate underΔVTH_O = +0.33 V is 6.033%, it can effectively reproduces almost identical OLED current regardless of the DTFT threshold voltage deviation and OLED degradation.
    In the 6T1C simulation results show that the average OLED current error rate under ΔVTH = ±0.33 V is 0.554%, the average OLED current non-uniformity under ΔVTH = ±0.33 V is 1.099%, and the average OLED current error rate underΔVTH_O = +0.33 V is 5.912%, it can effectively reproduces almost identical OLED current regardless of the DTFT threshold voltage deviation and OLED degradation.
    The above results show that the image non-uniformity of AMOLED can be effectively improved at the same time by compensating the DTFT threshold voltage deviation and the OLED threshold voltage degradation. Thus, we believe that the proposed pixel circuit design has very high driving capability and is a promising candidate for the large size, high resolution AMOLED panels.

    論文摘要 I Abstract IV 致謝 VII Chapter 1 Introduction 1 1.1 Liquid Crystal Display 1 1.2 Organic Light Emitting Display 5 1.2.1 OLED Story 5 1.2.2 OLED Structure and Operation 6 1.3 OLED Advantages 8 1.3.1 OLED Comparing with LCD 8 1.3.2 OLED Applications 17 1.4 Motivation 18 1.5 Thesis Organization 20 Chapter 2 Display technology 22 2.1 Thin-Film Engineering on Display 22 2.2 Device and Structure Fabrication 25 2.2.1 TFT Structure 25 2.2.2 LTPS TFT 30 2.2.3 Organic TFT 33 2.2.4 Pixel Structure on TFT Array 37 2.3 Driving Method 39 2.3.1 Passive Matrix Addressing 39 2.3.2 Active Matrix Addressing 41 2.3.3 Driving TFT for N-type and P-type 44 Chapter 3 Pixel Circuit Designs for AMOLED 47 3.1 Introduction 47 3.2 Alternating Current (AC) Driving 49 3.2.1 Introduction 49 3.2.2 Alternating Current (AC) Scheme 50 3.3 Digital Driving 52 3.3.1 Introduction 52 3.3.2 Area Ratio Gray Scale (ARG) 52 3.3.3 Time Ratio Gray Scale (TRG) 53 3.4 Optical Feedback 55 3.4.1 Introduction 55 3.4.2 Operation of the optical feedback 55 3.5 Current Programming 58 3.5.1 Introduction 58 3.5.2 Current Copy Type for Current Programming 60 3.5.3 Current Mirror Type for Current Programming 64 3.6 Voltage Programming 68 3.6.1 Diode Connected Structure in P-type Driving TFT 68 3.6.2 Diode Connected Structure in N-type Driving TFT 70 3.6.3 Source Follower Structure 72 Chapter 4 Proposed Voltage Programming Pixel Circuits 75 4.1 Introduction 75 4.2 AIM-SPICE and Device Model 78 4.2.1 AIM-SPICE 78 4.2.2 Poly-Si TFT Model 78 4.3 2T1C Conventional Pixel Circuit 80 4.3.1 Circuit Operation 80 4.3.2 Simulation Results 81 4.4 5T1C Voltage Programming Pixel Circuit 90 4.4.1 Introduction 90 4.4.2 New Pixel Circuit Design Scheme 91 4.4.3 Simulation Results 96 4.4.4 Conclusion 111 4.5 6T1C Voltage Feedback Pixel Circuit 112 4.5.1 Introduction 112 4.5.2 New Pixel Circuit Design Scheme 113 4.5.3 Simulation Results 118 4.5.4 Conclusion 133 4.6 Summary 135 4.6.1 Proposed 5T1C Voltage Programming Pixel Circuit 135 4.6.2 Proposed 6T1C Voltage Feedback Pixel Circuit 135 Chapter 5 Future Work 137

    Chapter 1
    [1.1] Tang, C. W. and Van Slyke, S. A., “Organic electroluminescent diodes” , Appl. Phys. Lett., Vol. 51, pp. 913-915 (1987)
    [1.2] Hosokawa, C., Matsuura, M., Eida, M., Fukuoka, K., Tokailin, H., and Kusumoyo, T., “Full-color organic EL display” , in SID Tech. Dig., pp.7–10 (1998)
    [1.3] Lin, C. W., Peng, D. Z., Lee, R., Shih, Y. F., Jan, C. K., Hsieh, M. H., Chang, S. C., and Tsai, Y. M., “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD” , in Int. Display Manufacturing Conf., pp. 315–318 (2005)
    [1.4] Nakamura, H., Hosokawa, C., and Kusumoto, T., “Transient behavior of organic electroluminescent cells” , in Inorganic and Organic Electroluminescence/EL 96 Berlin, p. 95 (1996)
    [1.5] Jung, S. H., Nam, W. J., and Han, M. K., “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs” , IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690–692 Oct. (2004)
    [1.6] Tai, Y. H., Chen, B. T., Kuo, Y. J., Tsai, C. C., Chiang, K. Y., Wei, Y. J., and Cheng, H. C., “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors” , J. Display Technol., Vol. 1, No. 1, pp. 100–104 Sep. (2005)
    [1.7] Lee, J. H., Kim, J. H., and Han, M. K., “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED” , IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897–899 Dec. (2005)
    [1.8] Lin, C. L. and Chen, Y. C., “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED” , IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 Feb. (2007)
    [1.9] He, Y., Hattori, R., and Kanicki, J., “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays” , Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001)
    [1.10] Mizukami, M., Inukai, K., Yamagata, H., Konuma, T., Nishi, T., Koyama, J., Yamazaki, S., and Tsutsui, T., “6-bit digital VGA OLED” , in Proc. SID Tech. Dig., pp. 912–915 (2000)
    [1.11] Lin, Y. C. and Shsieh, H. P. D., “Improvement of brightness uniformity by AC driving scheme for AMOLED displays” , IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 Nov. (2004)

    Chapter 2
    [2.1] Nakamura, H., Hosokawa, C., and Kusumoto, T., “Transient behavior of organic electroluminescent cells” , in Inorganic and Organic Electroluminescence/EL 96 Berlin, p. 95 (1996)
    [2.2] Hosokawa, C., Eida, E., Matsuura, M., Fukuoka, K., Nakamura, H., and Kusumoto, T., “Organic multicolor EL display with fine pixels” , in Dig. Soc. Information Display Int. Symp., Vol. 28, pp. 1073-1076 (1997)
    [2.3] Xiong, S., Guo, B., Wu, C., Chen, Y., Hao, Y., Zhou, Z., and Yang, H., “A novel design of sub-frame and current driving method for PM-OLED” , in SID Tech. Dig. pp. 1174-1177 (2002)
    [2.4] Kim, S. J. and Kwon, O. K., “Low-power driving method and circuit for passive matrix organic electro-luminescent displays” , in Proceedings of International Display Workshops, pp. 1195-1198 (2002)
    [2.5] Dawson, R. M. A., Shen, Z., Furst, D. A., Connor, S., Hsu, J., Kane, M. G., Stewart, R. G., Ipri, A., King, C. N., Green, P. J., Flegal, R. T., Pearson, S., Barrow W. A., Dickey, E., Ping, K., Robinson, S., Tang, C. W., Van Slyke, S., Chen, F., Shi, J., Lu, M. H., and Sturm, J. C., “The Impact of the Transient Response of Orgarnic Light Emitting Diodes on the Design of Active Matrix OLED Displays” , IEEE International Electron Device Meeting, pp. 875–878 (1998)
    [2.6] Wu, C. C., Chen, C W., Lin, C. L., and Yang, C. J., “Advanced organic light-emitting devices for enhancing display performances” , IEEE Journal of Display Technology, Vol. 1, No. 2, pp. 248–266 Dec. (2005)
    [2.7] Mutsumi Kimura, Ichio Yudasaka, Sadao Kanbe, Hidekazu Kobayashi, Hiroshi Kiguchi, Shun-ichi Seki, Satoru Miyashita, Tatsuya Shimoda, Tokuro Ozawa, Kiyofumi Kitawada, Takashi Nakazawa, Wakao Miyazawa, and Hiroyuki Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display” , IEEE Trans. Electron Devices, Vol. 46, pp.2282-2288 (1999)
    [2.8] Masaya Nakai, Hiroyuki Fujii, Tsuyoshi Tsujioka, Yuji Hamada, and Hisakazu Takahashi, “Degradation of organic layers of organic light emitting devices by continuous operation” , Jpn. J. Appl. Phys., Vol. 41, pp. 881-884 (2002)

    Chapter 3
    [3.1] Hosokawa, C., Matsuura, M., Eida, M., Fukuoka, K., Tokailin, H., and Kusumoto, T., “Full-color organic EL display” , in SID Tech. Dig., pp. 7–10 (1998)
    [3.2] Lin, C. W., Pang, D. Z., Lee, R., Shih, Y. F., Jan, C. K., Hsieh, M. H., Chang, S. C., and Tsai, Y. M., “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD” , Proc. Int. Symp. Int. Display Manufacturing Conf. Exhib., pp. 315–318 (2005)
    [3.3] Dawson, R. M. A., Shen, Z., Furst, D. A., Connor, S., Hsu, J., Kane, M. G., Stewart, R. G., Ipri, A., King, C. N., Green, P. J., Flegal, R. T., Pearson, S., Barrow W. A., Dickey, E., Ping, K., Robinson, S., Tang, C. W., Van Slyke, S., Chen, F., Shi, J., Lu, M. H., and Sturm, J. C., “The Impact of the Transient Response of Orgarnic Light Emitting Diodes on the Design of Active Matrix OLED Displays” , IEEE International Electron Device Meeting, pp. 875–878 (1998)
    [3.4] Kimura, M., Yudasaka, I., Kanbe, S., Kobayashi, H., Kiguchi, H., Seki, S. I., Miyashita, S., Shimoda, T., Ozawa, T., Kitawada, K., Nakazawa, T., Miyazawa, W., and Ohshima, H., “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display” , IEEE Trans. Electron Devices, Vol. 46, No. 12, pp. 2282–2288 Dec. (1999)
    [3.5] Lee, J. H., You, B. H., Nam, W. J., Lee, H. J., and Han, M. K., “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED” , SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 264–267 (2004)
    [3.6] Choi, S. M., Kwon, O. K., and Chung, H. K., “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays” , SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 260–263 (2004)
    [3.7] Lu, H. Y., Liu, P. T., Chang, T. C., and Chi, S., “Enhancement of brightness uniformity by a newvoltage-modulated pixel design for AMOLED displays” , IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006)
    [3.8] Lee, J. H., Park, S. G., Jeno, J. H., Goh, J. C., Huh, J. M., Choi, J., Chung, K., and Han, M. K., “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane” , Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007)
    [3.9] Shin, H. S., Lee, W. K., Park, S. G., Kuk, S. H., and Han, M. K., “Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors” , Jpn. J. Appl. Phys., Vol. 48, p. 03B023 (2009)
    [3.10] Fan, C. L., Lin, Y. S., and Liu, Y. W., “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes” , IEICE Trans. Electron, Vol. E93-C, p. 712 (2010)
    [3.11] Fan, C. L., Lin, Y. Y., Lin, B. S., Chang, J. Y., and Cjang, H. C., “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED” , Journal of the Korean Physical Society, Vol. 56, p. 1185 (2010)
    [3.12] Fan, C. L., Lin, Y. Y., Chang, J. Y., Sun, B. J., and Liu, Y. W., “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode” , Jpn. J. Appl. Phys., Vol. 49, (2010)
    [3.13] Fan, C. L., Lai, H. L., and Chang, J. Y., “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays” , Jpn. J. Appl. Phys., Vol. 49, (2010)
    [3.14] Lee, J. H., Nam, W. J., Jung, S. H., and Han, M. K., “A new current scaling pixel circuit for AMOLED” , IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 May (2004)
    [3.15] He, Y., Hattori, R., and Kanicki, J., “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays” , Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001)
    [3.16] Lee, J. H., Nam, W. J., Kim, C. Y., Shin, H. S., Kim, C. D., and Han, M. K., “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode” , Jpn. J. Appl. Phys., Vol. 45, pp. 4402–4406 (2006)
    [3.17] Lee, H., Yoo, J. S., Kim, C. D., Chung, I. J., and Kanicki, J., “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices” , Jpn. J. Appl. Phys., Vol. 46, pp. 1343–1349 (2007)
    [3.18] Chen, B. T., Tai, Y. H., Kuo, Y. J., Tsai, C. C., and Cheng, H. C., “New pixel circuits for driving active matrix organic light emitting diodes” , Solid-State Electron, Vol. 50, pp. 272–275 (2006)
    [3.19] Lin, Y. C. and Shieh, H. P. D., “Improvement of Brightness Uniformity by AC Driving Scheme for AMOLED Display” , IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 Nov. (2004)
    [3.20] Simon W-B. Tam, Yojiro Matsueda, Hiroshi Maeda, Mutsumi Kimura, Tatsuya Shimoda, and Piero Migliorato, “Polysilicon TFT drivers for light emitting polymer displays” , in Proceedings of International Display Workshops, pp. 175-178 (1999)
    [3.21] Ju Young Jeong and Jaegeun Kim, “Dual modulation driving for poly-Si TFT active matrix OLED displays” , in Proceedings of International Display Workshops, pp. 551-554 (2003)
    [3.22] Yoshifumi Tanada, Mitsuaki Osame, Ryota Fukumoto, Keiko Saito, Junichiro Sakata, Shumpei Yamazaki, Satoshi Murakami, Kanji Inose, Nobuyuki Miyoshi, and Kazuhiko Sato, “A 4.3-in. VGA (188ppi) AMOLED display with a new driving method” , in SID Tech. Dig., pp. 1398-1401 (2004)
    [3.23] Moon Hyo Kang, Ji Ho Hur, Youn Duck Nam, Eun Ho Lee, Se Hwan Kim, and Jin Jang, “An optical feedback compensation circuit with a-Si:H thin-film transistors for active matrix organic light emitting diodes” , Journal of Non-Crystalline Solids, Vol. 354, pp. 2523-2528 (2008)
    [3.24] Dawson, R. M. A., Shen, Z., Furest, D. A., Connor, S., Hsu, J., Kane, M. G., Stewart, R. G., Ipri, A., King, C. N., Green, P. J., Flegal, R. T., Pearson, S., Barrow, W. A., Dickey, E., Ping, K., Robinson, S., Tang, C.W., Van Slyke, S., Chen, F., Shi, J., Lu, M. H., and Sturm, J. C., “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays” , in IEDM Tech. Dig., pp. 875–878 (1998)
    [3.25] Sasaoka, T., Sekiya, M., Yumoto, A., Yamada, J., Hirano, T., Iwase, Y., Yamada, T., Ishibashi, T., Mori, T., Asano, M., Tamura, S., and Urabe, T., “A 13.0-inch AMOLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC)” , in Proc. SID Tech. Dig., pp. 384–387 (2001)
    [3.26] Sang Hoon Jung, Hee Sun Shin, Jae Hoon Lee, and Min Koo Han, “An AMOLED pixel for VT compensation of TFT and a p-type LTPS shift register by employing 1 phase clock signal” , in Proc. SID Tech. Dig., pp. 300–303 (2005)
    [3.27] Lee, J. H., Kim, J. H., and Han, M. K., “A New a-Si:H TFT Pixel Circuit Compensating the Threshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED” , IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897-899 Dec. (2005)
    [3.28] Lu, H. Y., Liu, P. T., Chang, T. C., and Chi, S., “Enhancement of Brightnes Uniformity by a New Voltage-Modulated Pixel Design for AMOLED Displays” , IEEE Electron Device Lett., Vol. 27, No. 9, pp.743-745 Sep. (2006)

    Chapter 4
    [4.1] Stewart, M., Howell, R. S., Pires, L., Hatalis, M. K., Howard, W., and Prache, O., IEDM Tech. Dig., pp. 871–874 (1998)
    [4.2] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process” , SID Tech. Dig., pp. 899-901 (2002)
    [4.3] Lee, J. H., You, B. H., Nam, W. J., Lee, H. J., Han, M. K., “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED” , In SID Tech Dig., pp. 264–267 (2004)
    [4.4] Hosokawa, C., Matsuura, M., Eida, M., Fukuoka, K., Tokailin, H., and Kusumoto, T., “ Full-Color Organic EL Display” , SID, International Symp. Proc., p. 7 (1998)
    [4.5] Kimura, M., Yudasaka, I., Kanbe, S., Kobayashi, H., Kiguchi, H., Seki, S. I., Miyashita, S., Shimoda, T., Ozawa, T., Kitawada, K., Nakazawa, T., Miyazawa, W., and Ohshima, H., “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display” , IEEE Trans. Electron Devices, Vol. 46, No. 12, pp. 2282–2288 Dec. (1999)
    [4.6] Dawson, R., Shen, Z., Furest, D. A., Connor, S., Hsu, J., Kane, M. G., Stewart, R. G., Ipri, A., King, C. N., Green, P. J., Flegal, R. T., Pearson, S., Tang, C. W., Van Slyke, S., Chen, F., Shi, J., Lu, M. H., and Sturm, J. C., “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays” , in IEDM Tech. Dig., pp. 875–878 (1998)
    [4.7] Powell, M. J., Berkel, C., and Hughes, J. R., “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors” , Appl. Phys. Lett., Vol. 54, pp. 1323–1325 Jan. (1989)
    [4.8] Nathan, A., Kumar, A., Sakariya, K., Servati, P., Sambandan, S., and Striakhilev, D., “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic” , IEEE J. Solid-State Circuits, Vol. 39, No. 9, pp. 1477–1486 Sep. (2004)
    [4.9] Chen, T. F., Yeh, C. F., and Lou, J. C., “Investigation of grain boundary control in the drain junction on laser-crystalized poly-si thin film transistors” , IEEE Electron Device Lett., Vol. 24, No. 7, pp. 457–459 Jul. (2003)
    [4.10] Bae, S. J., Lee, H. S., Lee, J. Y., Park, J. Y., and Han, C.W., “A novel pixel design for an active matrix organic light emitting diode display” , in Proc. IDRC, pp. 358–361 (2000)
    [4.11] Lin, C. W., Peng, D. Z., Lee, R., Shih, Y. F., Jan, C. K., Hsieh, M. H., Chang, S. C., and Tsai, Y. M., “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD” , in Int. Display Manufacturing Conf., pp. 315–318 (2005)
    [4.12] Goh, J. C., Chung, H. J., and Jang, J., “A new pixel circuit for active matrix organic light emitting diodes” , IEEE Electron Device Lett., Vol. 23, No. 9, pp. 544–546 Sep. (2002)
    [4.13] He, Y., Hattori, R., and Kanicki, J., “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays” , Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001)
    [4.14] Lin, Y. C., Shieh, H. P. D., and Kanicki, J., “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs” , IEEE Trans. Electron Devices, Vol. 52, pp. 1123–1131 June (2005)
    [4.15] Lin, Y. C. and Shieh, H. P. D., “Improvement of brightness uniformity by AC driving scheme for AMOLED display” , IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 Nov. (2004)
    [4.16] Jung, S. H., Nam, W. J., and Han, M. K., “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs” , IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690-692 Oct. (2004)
    [4.17] Jung, S. H., Shin, H. S., Lee, J. H., and Han, M. K., “An AMOLED Pixel for the VT Compensation of TFT and a p-Type LTPS Shift Register by Employing 1 Phase Clock Signal” , in SID Tech. Dig., pp. 300–303 (2005)
    [4.18] Lee, J. H., You, B. H., Nam, W. J., Lee, H. J., and Han, M. K., “A New a-Si:H TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED” , in SID Tech. Dig., pp. 264–267 (2004)
    [4.19] Lee, J. H., Kim, J. H., and Han, M. K., “A New a-Si:H TFT Pixel Circuit Compensating the Threshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED” , IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897–899 Dec. (2005)

    QR CODE