簡易檢索 / 詳目顯示

研究生: 歐芮妡
Jui-Hsin Ou
論文名稱: 可在乾旱環境中運作的高性能濕氣發電裝置
A High-Performance Moist-Electric Generator that Can Function in Arid Environment
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 吳嘉文
Kevin C.-W. Wu
郭紹偉
Shiao-Wei Kuo
邱昱誠
Yu-Cheng Chiu
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 84
中文關鍵詞: 能量轉換濕氣發電裝置離子傳輸乾旱環境聚電解質蠶絲纖維
外文關鍵詞: Energy conversion, Moist-electric generator, Ion transport, Arid environment, Polyelectrolyte, Silk
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract III 摘要 V Acknowledgments VI Table of Contents VII List of Figures X List of Table XIV Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 4 1.3 Motivation 11 Chapter 2 Mechanism 13 2.1 The moist-electric generation 13 2.2 The mechanism of SMEG 14 Chapter 3 Equipment and Methods 17 3.1 Chemicals and equipment 17 3.1.1 Chemicals 17 3.1.2 Equipment 18 3.1.3 Experimental supplies 19 3.1.4 Experimental setup 19 3.1.5 Material analysis instrument 21 3.2 Methods 23 3.2.1 The preparation of silk nanofibers 23 3.2.2 The fabrication of SMEG 24 3.2.3 The power generation efficiency and energy conversion experiment of SMEG in arid environment 25 Chapter 4 Results and Discussion 28 4.1 Raw materials analysis 28 4.1.1 Carbon Black 28 4.1.2 Silk nanofibers 32 4.1.3 PSSA 33 4.1.4 PDDA 34 4.2 Membrane Analysis 35 4.3 Factors influencing the power generation efficiency of SMEG 40 4.3.1 Effect of silk 40 4.3.2 Effect of humidity 42 4.3.3 Effect of temperature 43 4.3.4 Effect of carbon material 45 4.3.5 Effect of carbon black 46 4.3.6 Effect of PSSA 46 4.3.7 Effect of positive polyelectrolyte 48 4.3.8 Effect of membrane size 49 4.3.9 Effect of Silk/PSSA/CB thickness 50 4.3.10 Effect of PDDA thickness 51 4.4 Actual performance and real-life applications of the SMEG 52 4.4.1 Long-term stability 55 4.4.2 Voltage and current amplification by series and parallel configurations 56 4.4.3 SMEG in real-life applications 57 4.4.4 Charging capacitors using SMEG 58 Chapter 5 Conclusion 60 References 62

    [1] Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K.-H., Solar Energy: Potential and Future Prospects. Renewable Sustainable Energy Rev. 2018, 82, 894-900.
    [2] Al-Dousari, A.; Al-Nassar, W.; Al-Hemoud, A.; Alsaleh, A.; Ramadan, A.; Al-Dousari, N.; Ahmed, M., Solar and Wind Energy: Challenges and Solutions in Desert Regions. Energy 2019, 176, 184-194.
    [3] Gong, J.; Li, C.; Wasielewski, M. R., Advances in Solar Energy Conversion. Chem. Soc. Rev. 2019, 48, 1862-1864.
    [4] Granqvist, C. G., Solar Energy Materials. Adv. Mater. 2003, 15, 1789-1803.
    [5] Foley, A. M.; Leahy, P. G.; Marvuglia, A.; McKeogh, E. J., Current Methods and Advances in Forecasting of Wind Power Generation. Renewable energy 2012, 37, 1-8.
    [6] Islam, M. R.; Mekhilef, S.; Saidur, R., Progress and Recent Trends of Wind Energy Technology. Renewable Sustainable Energy Rev. 2013, 21, 456-468.
    [7] Bartle, A., Hydropower Potential and Development Activities. Energy policy 2002, 30, 1231-1239.
    [8] Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L. M. C.; Sousa, S., Assessment of the Environmental Impacts Associated with Hydropower. Renewable Sustainable Energy Rev. 2017, 70, 896-904.
    [9] Field, C. B.; Campbell, J. E.; Lobell, D. B., Biomass Energy: The Scale of the Potential Resource. Trends Ecol. Evol. 2008, 23, 65-72.
    [10] Tekin, K.; Karagöz, S.; Bektaş, S., A Review of Hydrothermal Biomass Processing. Renewable Sustainable Energy Rev. 2014, 40, 673-687.
    [11] Barbier, E., Geothermal Energy Technology and Current Status: An Overview. Renewable Sustainable Energy Rev. 2002, 6, 3-65.
    [12] Soltani, M.; Kashkooli, F. M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J. S., Environmental, Economic, and Social Impacts of Geothermal Energy Systems. Renewable Sustainable Energy Rev. 2021, 140, 110750.
    [13] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    [14] Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.-Y.; Jiang, L.; Wen, L., High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy Conversion. Nat. Commun. 2019, 10, 3876.
    [15] Segura, E.; Morales, R.; Somolinos, J.; López, A., Techno-Economic Challenges of Tidal Energy Conversion Systems: Current Status and Trends. Renewable Sustainable Energy Rev. 2017, 77, 536-550.
    [16] Khojasteh, D.; Khojasteh, D.; Kamali, R.; Beyene, A.; Iglesias, G., Assessment of Renewable Energy Resources in Iran; with a Focus on Wave and Tidal Energy. Renewable Sustainable Energy Rev. 2018, 81, 2992-3005.
    [17] Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L., Highly Efficient Moisture-Enabled Electricity Generation from Graphene Oxide Frameworks. Energy Environ. Sci. 2016, 9, 912-916.
    [18] Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L., An Efficient Polymer Moist-Electric Generator. Energy Environ. Sci. 2019, 12, 972-978.
    [19] Shen, D.; Duley, W. W.; Peng, P.; Xiao, M.; Feng, J.; Liu, L.; Zou, G.; Zhou, Y. N., Moisture‐Enabled Electricity Generation: From Physics and Materials to Self‐Powered Applications. Adv. Mater. 2020, 32, 2003722.
    [20] Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L., Direct Power Generation from a Graphene Oxide Film under Moisture. Adv. Mater. 2015, 27, 4351-4357.
    [21] Xue, J.; Zhao, F.; Hu, C.; Zhao, Y.; Luo, H.; Dai, L.; Qu, L., Vapor‐Activated Power Generation on Conductive Polymer. Adv. Funct. Mater. 2016, 26, 8784-8792.
    [22] Zhu, R.; Zhu, Y.; Chen, F.; Patterson, R.; Zhou, Y.; Wan, T.; Hu, L.; Wu, T.; Joshi, R.; Li, M., Boosting Moisture Induced Electricity Generation from Graphene Oxide through Engineering Oxygen-Based Functional Groups. Nano Energy 2022, 94, 106942.
    [23] Sezer, N.; Koç, M., A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy 2021, 80, 105567.
    [24] Falconi, C., Piezoelectric Nanotransducers. Nano Energy 2019, 59, 730-744.
    [25] Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L., Flexible Triboelectric Generator. Nano energy 2012, 1, 328-334.
    [26] Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A. C.; Xu, C., Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1427.
    [27] Xu, X.; Gabor, N. M.; Alden, J. S.; Van Der Zande, A. M.; McEuen, P. L., Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Lett. 2010, 10, 562-566.
    [28] Bergfield, J. P.; Solis, M. A.; Stafford, C. A., Giant Thermoelectric Effect from Transmission Supernodes. ACS Nano 2010, 4, 5314-5320.
    [29] Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N., Self‐Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Adv. Mater. 2018, 30, 1705925.
    [30] Cheng, H.; Huang, Y.; Zhao, F.; Yang, C.; Zhang, P.; Jiang, L.; Shi, G.; Qu, L., Spontaneous Power Source in Ambient Air of a Well-Directionally Reduced Graphene Oxide Bulk. Energy Environ. Sci. 2018, 11, 2839-2845.
    [31] Liu, X.; Gao, H.; Ward, J. E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D. R.; Yao, J., Power Generation from Ambient Humidity Using Protein Nanowires. Nature 2020, 578, 550-554.
    [32] Sun, Z.; Feng, L.; Wen, X.; Wang, L.; Qin, X.; Yu, J., Nanofiber Fabric Based Ion-Gradient-Enhanced Moist-Electric Generator with a Sustained Voltage Output of 1.1 Volts. Mater. Horiz. 2021, 8, 2303-2309.
    [33] Wang, H.; Sun, Y.; He, T.; Huang, Y.; Cheng, H.; Li, C.; Xie, D.; Yang, P.; Zhang, Y.; Qu, L., Bilayer of Polyelectrolyte Films for Spontaneous Power Generation in Air up to an Integrated 1,000 V Output. Nat. Nanotechnol. 2021, 16, 811-819.
    [34] Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L., Interface-Mediated Hygroelectric Generator with an Output Voltage Approaching 1.5 Volts. Nat. Commun. 2018, 9, 4166.
    [35] Liang, Y.; Zhao, F.; Cheng, Z.; Deng, Y.; Xiao, Y.; Cheng, H.; Zhang, P.; Huang, Y.; Shao, H.; Qu, L., Electric Power Generation Via Asymmetric Moisturizing of Graphene Oxide for Flexible, Printable and Portable Electronics. Energy Environ. Sci. 2018, 11, 1730-1735.
    [36] Wang, H.; Cheng, H.; Huang, Y.; Yang, C.; Wang, D.; Li, C.; Qu, L., Transparent, Self-Healing, Arbitrary Tailorable Moist-Electric Film Generator. Nano Energy 2020, 67, 104238.
    [37] Lee, S.; Eun, J.; Jeon, S., Facile Fabrication of a Highly Efficient Moisture-Driven Power Generator Using Laser-Induced Graphitization under Ambient Conditions. Nano Energy 2020, 68, 104364.
    [38] Li, P.; Su, N.; Wang, Z.; Qiu, J., A Ti3c2t X Mxene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS nano 2021, 15, 16811-16818.
    [39] He, W.; Wang, H.; Huang, Y.; He, T.; Chi, F.; Cheng, H.; Liu, D.; Dai, L.; Qu, L., Textile-Based Moisture Power Generator with Dual Asymmetric Structure and High Flexibility for Wearable Applications. Nano Energy 2022, 95, 107017.
    [40] Wu, Y.; Shao, B.; Song, Z.; Li, Y.; Zou, Y.; Chen, X.; Di, J.; Song, T.; Wang, Y.; Sun, B., A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators. ACS Appl. Mater. Interfaces 2022, 14, 19569-19578.
    [41] Tan, J.; Fang, S.; Zhang, Z.; Yin, J.; Li, L.; Wang, X.; Guo, W., Self-Sustained Electricity Generator Driven by the Compatible Integration of Ambient Moisture Adsorption and Evaporation. Nat. Commun. 2022, 13, 3643.
    [42] Qin, Y.; Tan, J.; Meng, S.; Li, Y.; Zhai, M.; Song, X.; Chen, C.; Ren, X.; Li, Q.; Cheng, M., Enhanced Moisture-Enabled Electricity Generation through Carbon Dot Surface Functionalization Using Strong Ionizing Organic Acid. New J. Chem. 2023, 47, 7211-7216.
    [43] Jiang, Y.; Duan, Z.; Fan, Z.; Yao, P.; Yuan, Z.; Jiang, Y.; Cao, Y.; Tai, H., Power Generation Humidity Sensor Based on Nacl/Halloysite Nanotubes for Respiratory Patterns Monitoring. Sens. Actuators, B 2023, 133396.
    [44] Sun, Z.; Wen, X.; Wang, L.; Yu, J.; Qin, X., Capacitor-Inspired High-Performance and Durable Moist-Electric Generator. Energy Environ. Sci. 2022, 15, 4584-4591.
    [45] Hu, Q.; Ren, G.; Ye, J.; Zhang, B.; Rensing, C.; Zhou, S., Hygroelectric-Photovoltaic Coupling Generator Using Self-Assembled Bio-Nano Hybrids. Chem. Eng. J. 2023, 452, 139169.
    [46] Guo, W.; Tian, Y.; Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834-2846.
    [47] Liu, Q.; Wang, Y.; Guo, W.; Ji, H.; Xue, J.; Ouyang, Q., Asymmetric Properties of Ion Transport in a Charged Conical Nanopore. Phys. Rev. E 2007, 75, 051201.
    [48] Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X., Mechanically Strong Mxene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 2920.
    [49] Cayre, O. J.; Chang, S. T.; Velev, O. D., Polyelectrolyte Diode: Nonlinear Current Response of a Junction between Aqueous Ionic Gels. J. Am. Chem. Soc. 2007, 129, 10801-10806.
    [50] Hou, Y.; Zhou, Y.; Yang, L.; Li, Q.; Zhang, Y.; Zhu, L.; Hickner, M. A.; Zhang, Q.; Wang, Q., Flexible Ionic Diodes for Low‐Frequency Mechanical Energy Harvesting. Adv. Energy Mater. 2017, 7, 1601983.
    [51] Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H., Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
    [52] Zhu, L.; Lu, Y.; Wang, Y.; Zhang, L.; Wang, W., Preparation and Characterization of Dopamine-Decorated Hydrophilic Carbon Black. Appl. Surf. Sci. 2012, 258, 5387-5393.
    [53] Cheng, Q.; Zhang, B.; He, Y.; Lu, Q.; Kaplan, D. L., Silk Nanofibers as Robust and Versatile Emulsifiers. ACS Appl. Mater. Interfaces 2017, 9, 35693-35700.
    [54] Zhang, X.; Wang, L.; Lu, Q.; Kaplan, D. L., Mass Production of Biocompatible Graphene Using Silk Nanofibers. ACS Appl. Mater. Interfaces 2018, 10, 22924-22931.
    [55] Sheikh, F. A.; Ju, H. W.; Moon, B. M.; Park, H. J.; Kim, J. H.; Lee, O. J.; Park, C. H., A Novel Approach to Fabricate Silk Nanofibers Containing Hydroxyapatite Nanoparticles Using a Three-Way Stopcock Connector. Nanoscale Res. Lett. 2013, 8, 303.
    [56] Nasef, M.; Zubir, N.; Ismail, A.; Khayet, M.; Dahlan, K.; Saidi, H.; Rohani, R.; Ngah, T.; Sulaiman, N., Pssa Pore-Filled Pvdf Membranes by Simultaneous Electron Beam Irradiation: Preparation and Transport Characteristics of Protons and Methanol. J. Membr. Sci. 2006, 268, 96-108.
    [57] Nitanan, T.; Akkaramongkolporn, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P., Neomycin-Loaded Poly (Styrene Sulfonic Acid-Co-Maleic Acid)(Pssa-Ma)/Polyvinyl Alcohol (Pva) Ion Exchange Nanofibers for Wound Dressing Materials. Int. J. Pharm. 2013, 448, 71-78.
    [58] Park, D. J.; Choi, Y.; Heo, S.; Cho, S. Y.; Jin, H.-J., Bacterial Cellulose Nanocrystals-Embedded Silk Nanofibers. J. Nanosci. Nanotechnol. 2012, 12, 6139-6144.
    [59] Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H., Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure. Polym. J. 2003, 35, 185-190.
    [60] Zhang, L.; Yi, D.; Hao, J., Poly (Diallyldimethylammonium) and Polyphosphate Polyelectrolyte Complexes as an All‐in‐One Flame Retardant for Polypropylene. Polym. Adv. Technol. 2020, 31, 260-272.

    無法下載圖示 全文公開日期 2028/08/17 (校內網路)
    全文公開日期 2028/08/17 (校外網路)
    全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE