簡易檢索 / 詳目顯示

研究生: 林昕
LINCY VARGHESE
論文名稱: 生物聚電解質複合薄膜與其水質除污效能之研究
Biopolymer-based polyelectrolyte complex membrane for effective removal of water contaminants
指導教授: 洪伯達
Po Da Hong
口試委員: 洪伯達
Po Da Hong
江少華
A.K. Prasannan
蔡協致
Hsieh-Chih Tsai
劉正哲
Cheng-Che Liu
戴子安
Chi-An Dai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 120
中文關鍵詞: 生物高分子油水分離染料混合之乳液分離太陽能蒸汽之形成抗病毒活性蛋白質分離聚電解質
外文關鍵詞: Biopolymer, Oil water separation, Dye mixed emulsion separation, solar steam generation, Anti-bacterial activity, Protein separation, polyelectrolyte
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來透過環境友善方法以進行薄膜製備與膜表面改質引起廣泛之注意,特別是這類方法能有更優秀的防污性、表面潤濕性與重複使用性。利用生物高分子如多醣、多酚、多肽等得到不同表面改質之薄膜進而製備聚電解質複合物(PEC),PEC因其多樣的表面官能基團而展現超親水及在水中的超疏油特性,使之預期能成為膜科學中極具潛力的技術。以生物高分子為基材的PEC塗佈膜在環境整治應用、廢水處理、油水分解、染料去除、蛋白質吸附、抗菌、太陽能海水淡化等面向皆能有優異的效用。本論文將聚焦在一些新穎生物高分子基礎之PEC塗佈膜的結構、特徵與應用,並針對不同環境汙染狀況整理並提出處置方案與材料。本文的第一章將有更詳盡之介紹;第二章則會闡述實驗之細節。
    本文的第三章中,我們試著發展能處理油水乳液分離、染料廢水處理、太陽能水淨化之多功能光電PEC膜,此PEC膜由硫酸軟骨素(CS)作為陰離子型聚電解質材料並以二甲基二丙烯基氯化銨-丙烯醯胺共聚物(PAAm-DADMAc)作為陽離子處理,表面則透過PEC為顆粒自組裝成的花菜結構提供能達99.4%的油水乳液分離效率且在八個過濾循環後仍有2316 L m-2 h-1 bar-1的乳液滲透通量,此官能基團亦表現出超親水性及在水中對由高到低不同黏度的油皆表現的超疏油性(接觸角~150o),由於PEC具充足的官能基團使其對陰離子型剛果紅染料、陽離子型亞甲藍染料及織物製程中產生之工業染料廢水皆能有效率的吸附並有99%的分離效率。除此之外,此PEC膜亦能用於太陽蒸氣淨水,在熱流密度 1 kW m–2下淨化含3.5%氯化鈉水,光熱轉換效率在經歷五個日照循環後亦能維持有2.31 kg m–2h–1之蒸氣效率。
    第四章中則探討自組裝核-殼PEC用於蛋白質吸附和抗微生物性上。靜電吸附自組裝是最有機會可達成可調電荷及親水性之多層PEC,這種製備方法也用於製作防污薄膜,在此我們透過單寧酸(TA)交聯之微米顆粒以穩定尺寸而多層結構提供表面和孔洞之功能性,我們也對帶相反電荷之PEC進行蛋白質的置換吸附與蛋白質透過鹽析方式聚集做深入討論。透過將具有多孔性之聚電解質多層結構塗佈到醋酸纖維素(CS)上以達到蛋白質吸附,多層結構和PEC表面官能基團的協同作用使得抗微生物性、超親水性、滲透性、抗污性等皆有提升。
    第五章討論使用合理化設計方法,以透過具有油/水乳液分離和能進行染料分離之PEC製備多功能性膜材料。在此多功能PEC膜中,嵌入混有奈米黏土鋰皂石(LP)之卡拉膠(CGN),且其表面由單寧酸交聯而成。透過這種方法取得的多功能膜材料(TA@CGN-LP)塗佈到濾紙上以對亞甲藍基染料進行乳液分離。TA@CGN-LP塗佈膜具有超親水性,水中對原油的接觸角為150 o,在空氣下對水之接觸角為40 o,表面官能基團亦能提供優秀的乳液分離效率達99.8%及約1721 Lm-2h−1 bar-1之流速。
    總的來說,我們設計的生物基PEC可作為膜表層鍍材,並能進行蛋白質分離、染料乳液分離、油水分離、廢水中之染料去除,此材料之優勢不僅在其能工業化製造,亦能對太陽能海水淡化與抗微生物性有更深入之學術與實務探討。


    An ecofriendly synthetic approach to membrane preparation and membrane surface modification has received much attention due to its excellent antifouling, surface wettability, and reusability. Utilization of biopolymers to the membrane modification surface is highly desirable to the formation of polyelectrolyte complex (PEC) and is attributed to variable surface functional groups of the biopolymers such as polysaccharides, polyphenol, and polypeptides. Thus, PEC-based membranes materials preparation is anticipated as an appropriate candidate in separation science because of its superhydrophilic and underwater superoleophobic properties from the versatile surface functional groups. Particularly in environmental remedies applications, wastewater treatment oil-water separation, dye removal, protein adsorption, antibacterial properties, and solar desalination materials with excellent efficiency can be achieved when biopolymer-based PEC is coated on the surface of the membrane. Hence, this dissertation mainly focuses on the formation, characterization, and application of some novel biopolymers-based polyelectrolyte complex materials as membrane surface-modified materials to sort out the various environmental contamination as remedy materials are the main goal of this Ph.D. work. The content begins with a detailed introduction in the first chapter and described the experimental section in the second chapter.
    Chapter 3 describes the development of multifunctional photothermal PEC membrane materials for oil/water emulsion separation, dye effluent removal, and solar water purification from chondroitin sulfate (CS) as anionic polyelectrolyte material, and treated with a cationic copolymer of poly (acrylamide-co-diallyl dimethylammonium chloride) (PAAm-DADMAc). The surfaces of the fabricated PEC cauliflower-like self-assembled microparticles exhibited good emulsion separation efficiency (99.4%) and emulsion permeation flux of 2316 L m-2 h-1 bar-1 after eight filtration cycles. The versatile functional groups were recognized for their superhydrophilicity and underwater superoleophobic nature (~150° of contact angle) for low-and high-viscosity oils. The abundance of functional groups of the PECs effectively absorbed anionic Congo red dye, cationic methylene blue dye, and textile dyeing industrial effluent with 99% separation efficiency. In addition, PEC modified membrane materials were successfully utilized as an effective solar steam generation to purify 3.5% NaCl contaminated water under 1 kW m–2. The efficient photo-thermal effects of PEC make a good evaporation rate and were retained with 2.31 kg m–2h–1 for five cycles.

    Chapter 4 dealt with the fabrication of a self-assembled core-shell polyelectrolyte complex for protein adsorption and antimicrobial activity. Electrostatic assembly-based deposition of polyelectrolytes is a promising method for the preparation of multilayers with modified charge and hydrophilicity, as well as for the preparation of antifouling membranes. The Tannic acid (TA) crosslinked microparticle complex provides tight dimensional control and the multilayer provides functionalities on the surface and in the pores. Particularly, protein adsorption into polyelectrolyte microparticles via alternate adsorption of oppositely charged polyelectrolytes was investigated, and adsorbed protein aggregates generated by salting out proteins were used as a matrix. Polyelectrolyte multilayer systems are integrated into the pore structure of microporous, track-etched cellulose acetate membranes (CA) based on a convective transport of adsorbing species. The synergistic combination of the multilayer structure and surface functional groups of PEC enabled antimicrobial properties with superhydrophilicity, permeability, antifouling, and antibacterial properties.
    Chapter 5 reported on a rational design for the fabrication of multifunctional membrane materials with a polyelectrolytic nature for oil/water emulsion separation, and dye mixed with emulsion separation. The multifunctional PEC membrane material was formed by intercalating through carrageenan (CGN) mixed with nanoclay laponite (LP), and its surface functionality was altered by the addition of Tannic acid (TA) for effective cross-link formation. The obtained multifunctional membrane (TA@CGN-LP) material was coated on filter paper for emulsion and methylene blue dye mixed with emulsion separation by filtration. The TA@CGN-LP coated membrane shows a superhydrophilic property with an underwater oil contact angle of 150° for crude oil and a water contact angle of 40° in air. Surface functional groups on the TA@CGN-LP membrane offer an excellent emulsion separation with high efficiency of 99.8% and a flux rate of approximately 1721 Lm-2h−1 bar-1.
    Overall, the designed biopolymer-based PEC can offer a new route to treat protein separation, dye mixed emulsion separation, oil-in-water emulsions, and dye removal from wastewater as membrane surface modify materials at an industrial level with solar desalination and antimicrobial activity by providing essential insight into scientific and practical accessibility.

    TABLE OF CONTENTS Abstract iv Acknowledgment vii Table of contents ix List of units and abbreviations xiii List of figures xvi List of tables xx Chapter 1 Introduction 1 1.1. An overview of environmental pollution 1 1.1.1. Oil-water contamination 2 1.1.2. Dye contamination 2 1.1.3. Bacterial contamination 3 1.2. Membrane Technology 4 1.3. Polymer materials and its classification 6 1.4. Polyelectrolyte complexes 7 1.4.1 Formation of PECs 8 1.5 Naturally occurring polyelectrolytes 9 1.5.1. Carrageenan 10 1.5.2. Chondroitin sulfate 11 1.5.3. Sodium alginate 12 1.5.4. Carboxy methylcellulose 12 1.5.5 Chitosan 12 1.6. Polyelectrolyte complexes (PECs)-based membrane material 13 1.7. Free-standing PEC membrane formation 15 1.8. Objectives of the study 16 Chapter 2 Experimental Section 20 2.1. Materials 20 2.2. Methods 20 2.2.1. Fabrication of CS/PAAm-DADMAc/GO 20 2.2.2. Fabrication of TA@CGN/Sericin 21 2.2.3. Fabrication of TA@CGN-LP composite 21 2.3. Measurements 21 Chapter 3 An integrated strategy for developing multifunctional photothermal membrane materials for oil/water emulsion separation, dye effluent removal, and solar water purification 24 3.1. Introduction 24 3.2. Result & discussion 26 3.2.1. Formation of CS-based PECs 26 3.2.2. Wetting behavior and emulsion separation 33 3.2.3. Dye industry-based untreated wastewater separation 35 3.2.4. Solar steam generation 38 3.3. Conclusion 43 Chapter 4 An integrated design and fabrication strategy for self-assembled core-shell polyelectrolyte complex for protein adsorption and their antibacterial activity.44 4.1. Introduction 44 4.2. Result & discussion 46 4.2.1. Optimizing stable κ-CGN/SS@TA microparticles 46 4.2.2. Fabrication of polyelectrolyte microparticle κ-CGN/SF@TA 48 4.2.3. Surface morphology 50 4.2.4. Protein separation 51 4.2.5. Antibacterial activity 52 4.3. Conclusion 53 Chapter 5 Rational design of multifunctional membrane material with underwater superoleophobicity for dye contaminated emulsion separation 54 5.1. Introduction 54 5.2. Result & discussion 55 5.2.1. Fabrication of TA@CGN-LP membrane material 55 5.2.2. Membrane fabrication 60 5.2.3. Membrane wettability 63 5.2.4. Self-cleaning and anti-fouling ability 64 5.2.5. Emulsion and MB dye contaminated emulsion separation 65 5.3. Conclusion 72 Chapter 6 Summary 74 Chapter 7 Bibliography 76

    [1]. Sahota, Lovedeep, and G. N. Tiwari. "Advanced solar-distillation systems." Green Energy Technol 10 (2017): 978-981.
    [2]. Bartram, Jamie, Kristen Lewis, Roberto Lenton, and Albert Wright. "Focusing on improved water and sanitation for health." The Lancet 365, no. 9461 (2005): 810-812.
    [3]. Norrrahim, Mohd Nor Faiz, Noor Azilah Mohd Kasim, Victor Feizal Knight, Muhammad Syukri Mohamad Misenan, Nurjahirah Janudin, Noor Aisyah Ahmad Shah, Norherdawati Kasim et al. "Nanocellulose: A bioadsorbent for chemical contaminant remediation." RSC advances 11, no. 13 (2021): 7347-7368.
    [4]. D. D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method, Energy & Environmental Science 5 (2012) 7908-7912. https://doi.org/10.1039/C2EE21848H.
    [5]. Z. Junping, S. Stefan, Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption, Advanced Functional Materials 21, (2011) 4699-4704. https://doi.org/10.1002/adfm.201101090.
    [6]. X. Dong, J. Chen, Y. Ma, J. Wang, M. B. Chan-Park, X. Liu, L. Wang, W. Huang, P. Chen, Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water, Chemical communications 48 (2012) 10660-10662. https://doi.org/10.1039/C2CC35844A.
    [7]. Q. Zhu, Q. Pan, Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation, ACS nano 8, (2014) 1402-1409. https://doi.org/10.1021/nn4052277.
    [8]. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties, Journal of Porous materials 10 (2003) 159-170. https://doi.org/10.1023/A:1027484117065.
    [9]. Y. Wang, X. Gong, Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications, Journal of Materials Chemistry A 5 (2017) 3759-3773. https://doi.org/10.1039/C6TA10474F.
    [10]. Jha, Manis K., Vinay Kumar, L. R. J. S. Maharaj, and R. J. Singh. "Studies on leaching and recycling of zinc from rayon waste sludge." Industrial & engineering chemistry research 43, no. 5 (2004): 1284-1295.
    [11]. Kentish, S. E., and G. W. Stevens. "Innovations in separations technology for the recycling and re-use of liquid waste streams." Chemical Engineering Journal 84, no. 2 (2001): 149-159.
    [12]. Ma, Qinglang, Hongfei Cheng, Anthony G. Fane, Rong Wang, and Hua Zhang. "Recent development of advanced materials with special wettability for selective oil/water separation." Small 12, no. 16 (2016): 2186-2202.
    [13]. Gupta, Raju Kumar, Gary J. Dunderdale, Matt W. England, and Atsushi Hozumi. "Oil/water separation techniques: a review of recent progresses and future directions." Journal of Materials Chemistry A 5, no. 31 (2017): 16025-16058.
    [14]. Zhou, Yanbo, Jian Lu, Yi Zhou, and Yongdi Liu. "Recent advances for dyes removal using novel adsorbents: a review." Environmental pollution 252 (2019): 352-365.
    [15]. Wei, Yibin, Hong Qi, Xiao Gong, and Shuaifei Zhao. "Specially wettable membranes for oil–water separation." Advanced Materials Interfaces 5, no. 23 (2018): 1800576.
    [16]. B.Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment, Water research 135 (2018) 262-277. https://doi.org/10.1016/j.watres.2018.02.034.
    [17]. D.A. Pethsangave, H.P. Wadekar, R.V. Khose, S.Some, Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures, Polymer Testing 90 (2020) 106743. https://doi.org/10.1016/j.polymertesting.2020.106743.
    [18]. S. Roy, J.W. Rhim, Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin, Food Hydrocolloids 90 (2019) 500-507. https://doi.org/10.1016/j.foodhyd.2018.12.056.
    [19]. S. Naseem, C.M. Wu, T.Z. Xu, C.C. Lai, S.P. Rwei, Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide, Polymers 10 (2018) 746. https://doi.org/10.3390/polym10070746.
    [20]. Prasannan, J. Udomsin, H.C. Tsai, C.F. Wang, J.Y. Lai, Robust underwater superoleophobic membranes with bio-inspired carrageenan/laponite multilayers for the effective removal of emulsions, metal ions, and organic dyes from wastewater, Chemical Engineering Journal 391 (2020) 123585. https://doi.org/10.1016/j.cej.2019.123585.
    [21]. W. Zhenxing, X. Yanchao , L. Yuyan, Lu Shao, A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup, Journal of Materials Chemistry A 3 (2015) 12171-12178. https://doi.org/10.1039/C5TA01767J.
    [22]. Prüss-Üstün, Annette, David Kay, Lorna Fewtrell, and Jamie Bartram. "Unsafe water, sanitation and hygiene." Comparative Quantification of Health Risks: Global and Regional Burden of Disease due to Selected Major Risk Factors 2 (2004): 1321-1352.
    [23]. Rengaraj, Saravanan, Álvaro Cruz-Izquierdo, Janet L. Scott, and Mirella Di Lorenzo. "Impedimetric paper-based biosensor for the detection of bacterial contamination in water." Sensors and Actuators B: Chemical 265 (2018): 50-58.
    [24]. Sattenspiel, Lisa. "Tropical environments, human activities, and the transmission of infectious diseases." American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists 113, no. S31 (2000): 3-31.
    [25]. Rengaraj, Saravanan, Álvaro Cruz-Izquierdo, Janet L. Scott, and Mirella Di Lorenzo. "Impedimetric paper-based biosensor for the detection of bacterial contamination in water." Sensors and Actuators B: Chemical 265 (2018): 50-58.
    [26]. Lee, Anna, Jeffrey W. Elam, and Seth B. Darling. "Membrane materials for water purification: design, development, and application." Environmental Science: Water Research & Technology 2, no. 1 (2016): 17-42.
    [27]. He, Xuezhong. "A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries." Energy, Sustainability and Society 8, no. 1 (2018): 1-14.
    [28]. Lomax, George Robert. "Breathable polyurethane membranes for textile and related industries." Journal of Materials Chemistry 17, no. 27 (2007): 2775-2784.
    [29]. Shutler, Sharon K., and Elinor Colbourn. "Natural Resource Restoration: The Interface Between the Endangered Species Act and CERCLA's Natural Resource Damage Provisions." Envtl. L. 24 (1994): 717.
    [30]. Anderson, Charles B. "Damage to Natural Resources and the Costs of Restoration." Tul. L. Rev. 72 (1997): 417.
    [31]. Karkkainen, Bradley C. "Managing transboundary aquatic ecosystems: lessons from the Great Lakes." Pac. McGeorge Global Bus. & Dev. LJ 19 (2006): 209.
    [32]. Collins, Sally, and Elizabeth Larry. "Caring for our natural assets: an ecosystem services perspective." UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE GENERAL TECHNICAL REPORT PNW 733 (2008): 1.
    [33]. Dong, Guo. "Analysis of global marine environmental pollution and prevention and control of marine pollution: Proposal of sollutions." Master's thesis, Universitat Politècnica de Catalunya, 2017.
    [34]. Sharma, B. C., and O. P. Gandhi. "Safety assessment of lubricating oil using AHP and vector projection method." Industrial Lubrication and Tribology 60, no. 5 (2008): 259-265.
    [35]. Raslan, Rafeqah, Mimi H. Hassim, Nishanth G. Chemmangattuvalappil, Denny KS Ng, and Joon Yoon Ten. "Development of inherent safety and health index for formulated product design." Journal of Loss Prevention in the Process Industries 66 (2020): 104209.
    [36]. Chaib, Rachid, and Michele Barone. Chemicals in the food industry: Toxicological concerns and safe use. Springer Nature, 2020.
    [37]. Raslan, Rafeqah, Mimi H. Hassim, Nishanth G. Chemmangattuvalappil, Denny KS Ng, and Joon Yoon Ten. "Development of inherent safety and health index for formulated product design." Journal of Loss Prevention in the Process Industries 66 (2020): 104209.
    [38]. Yong, Jiale, Jinglan Huo, Feng Chen, Qing Yang, and Xun Hou. "Oil/water separation based on natural materials with super-wettability: recent advances." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25140-25163.
    [39]. Singh, Keshav K. "Role of Nanotechnology and Nanomaterials for Water Treatment and Environmental Remediation." International Journal of New Chemistry 9, no. 3 (2022): 373-398.
    [40]. Jeevanantham, S., A. Saravanan, R. V. Hemavathy, P. Senthil Kumar, P. R. Yaashikaa, and D. Yuvaraj. "Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects." Environmental technology & innovation 13 (2019): 264-276.
    [41]. Hinojosa, M. Belén, José A. Carreira, Roberto García‐Ruíz, and Richard P. Dick. "Microbial Response to Heavy Metal–Polluted Soils: Community Analysis from Phospholipid‐Linked Fatty Acids and Ester‐Linked Fatty Acids Extracts." Journal of Environmental Quality 34, no. 5 (2005): 1789-1800.
    [42]. Bohidar, H. B., and Kamla Rawat. "Biological polyelectrolytes: solutions, gels, intermolecular complexes and nanoparticles." Polyelectrolytes (2014): 113-182.
    [43]. Joshi, Komal Sudhakar, Raju Onkar Sonawane, Pradum Pundlikrao Ige, and Snehal Kapil Bhavsar. "Polyelectrolyte Complex For Pharmaceutical Aid." International Journal Of All Research Writings 1, no. 12 (2019): 69-99.
    [44]. Amighi, Fatemeh, Zahra Emam-Djomeh, and Mohsen Labbafi-Mazraeh-Shahi. "Effect of different cross-linking agents on the preparation of bovine serum albumin nanoparticles." Journal of the Iranian Chemical Society 17, no. 5 (2020): 1223-1235.
    [45]. Jayakumar, R., M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, and N. Selvamurugan. "Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications." Progress in Materials Science 55, no. 7 (2010): 675-709.
    [46]. Bhattarai, Narayan, Jonathan Gunn, and Miqin Zhang. "Chitosan-based hydrogels for controlled, localized drug delivery." Advanced drug delivery reviews 62, no. 1 (2010): 83-99.
    [47]. Groot, Robert D. "Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants." The Journal of chemical physics 118, no. 24 (2003): 11265-11277.
    [48]. Cazorla-Luna, Raúl, Araceli Martín-Illana, Fernando Notario-Pérez, Roberto Ruiz-Caro, and María-Dolores Veiga. "Naturally occurring polyelectrolytes and their use for the development of complex-based mucoadhesive drug delivery systems: an overview." Polymers 13, no. 14 (2021): 2241.
    [49]. Caló, Enrica, and Vitaliy V. Khutoryanskiy. "Biomedical applications of hydrogels: A review of patents and commercial products." European polymer journal 65 (2015): 252-267.
    [50]. Egelandsdal, Bjorg, Kristen Fretheim, and Kunihiko Samejima. "Dynamic rheological measurements on heat‐induced myosin gels: Effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate." Journal of the Science of Food and Agriculture 37, no. 9 (1986): 915-926.
    [51]. Balakrishnan, Biji, and R. Banerjee. "Biopolymer-based hydrogels for cartilage tissue engineering." Chemical reviews 111, no. 8 (2011): 4453-4474.
    [52]. Esko, Jeffrey D., Koji Kimata, and Ulf Lindahl. "Proteoglycans and sulfated glycosaminoglycans." Essentials of Glycobiology. 2nd edition (2009).
    [53]. Manzano, Verónica Elena, María Natalia Pacho, Joana Elisa Tasqué, and Norma Beatriz D’Accorso. "Alginates: hydrogels, their chemistry, and applications." In Alginates, pp. 89-140. Apple Academic Press, 2019.
    [54]. Dou, Xueyu, Qing Zhou, Xiaohong Chen, Yeqiang Tan, Xin He, Ping Lu, Kunyan Sui, Ben Zhong Tang, Yongming Zhang, and Wang Zhang Yuan. "Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate." Biomacromolecules 19, no. 6 (2018): 2014-2022.
    [55]. Kayitmazer, A. Basak, Daniel Seeman, Burcu Baykal Minsky, Paul L. Dubin, and Yisheng Xu. "Protein–polyelectrolyte interactions." Soft Matter 9, no. 9 (2013): 2553-2583.
    [56]. Rabelo, Renata S., Guilherme M. Tavares, Ana S. Prata, and Miriam D. Hubinger. "Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration." Carbohydrate polymers 223 (2019): 115120.
    [57]. Durmaz, Elif Nur, Sevil Sahin, Ettore Virga, Sissi De Beer, Louis CPM De Smet, and Wiebe M. De Vos. "Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities." ACS Applied Polymer Materials 3, no. 9 (2021): 4347-4374.
    [58]. Ghasemi, Mohsen, and Ronald G. Larson. "Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates." AIChE Journal 68, no. 5 (2022): e17646.
    [59]. Hubbe, Martin A. "Contributions of Polyelectrolyte Complexes and Ionic Bonding to Performance of Barrier Films for Packaging: A Review." BioResources 16, no. 2 (2021).
    [60]. Yue, Rengyu, and Md Saifur Rahaman. "Hydrophilic and underwater superoleophobic porous graphitic carbon nitride (g-C3N4) membranes with photo-Fenton self-cleaning ability for efficient oil/water separation." Journal of Colloid and Interface Science 608 (2022): 1960-1972.
    [61]. Sun, Xin, Bai Xue, Shengdu Yang, Kangwei Huo, Xingyan Liao, Xujuan Li, Lan Xie, Shuhao Qin, and Qiang Zheng. "Structural conversion of PLLA/ZnO composites facilitated by interfacial crystallization to potential application in oil-water separation." Applied Surface Science 517 (2020): 146135.
    [62]. Subramani, Arun, and Joseph G. Jacangelo. "Emerging desalination technologies for water treatment: a critical review." Water research 75 (2015): 164-187.
    [63]. M.M. Pendergast, E.M Hoek, A review of water treatment membrane nanotechnologies, Energy & Environmental Science (2011), 4(6), pp.1946-1971. https://doi.org/10.1039/C0EE00541J
    [64]. G. Yang, J. Liang, X. Hu, M. Liu, X. Zhang, Y. Wei, Recent advances on fabrication of polymeric composites based on multicomponent reactions for bioimaging and environmental pollutant removal, Macromolecular Rapid Communications (2021), 42(6), p.2000563. https://doi.org/10.1002/marc.202000563
    [65]. A.D. Kulkarni, Y.H. Vanjari, K.H Sancheti, H.M. Patel, V.S. Belgamwar, S.J Surana, C.V. Pardeshi, Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications, Artificial cells, nanomedicine, and biotechnology (2016), 44(7), pp.1615-1625. https://doi.org/10.3109/21691401.2015.1129624
    [66]. Q. Zhao, Q.F. An, Y. Ji, J. Qian, C. Gao, Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications,
    A. Journal of membrane science (2011), 379(1-2), pp.19-45. https://doi.org/10.1016/j.memsci.2011.06.016
    [67]. C.C. Ye, F.Y. Zhao, J.K. Wu, X.D. Weng, P.Y. Zheng, Y.F. Mi, Q.F. An, C.J. Gao, Sulfated polyelectrolyte complex nanoparticles structured nanoflitration membrane for dye desalination, Chemical Engineering Journal (2017), 307, pp.526-536. https://doi.org/10.1016/j.cej.2016.08.122
    [68]. Insua, A. Wilkinson, F. Fernandez-Trillo, Polyion complex (PIC) particles: Preparation and biomedical applications, European polymer journal (2016), 81, pp.198-215. https://doi.org/10.1016/j.eurpolymj.2016.06.003
    [69]. C.C. Ye, Q.F. An, J.K. Wu, F.Y. Zhao, P.Y. Zheng, N.X. Wang, Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal, Chemical Engineering Journal (2019), 359, pp.994-1005. https://doi.org/10.1016/j.cej.2018.11.085
    [70]. X. Li, C. Liu, B. Van der Bruggen, Polyelectrolytes self-assembly: versatile membrane fabrication strategy, Journal of Materials Chemistry A (2020), 8(40), pp.20870-20896. https://doi.org/10.1039/D0TA07154D
    [71]. E.N. Durmaz, S. Sahin, E. Virga, S. De Beer, L.C. De Smet, W.M. De Vos, Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities, ACS Applied Polymer Materials (2021), 3(9), pp.4347-4374. https://doi.org/10.1021/acsapm.1c00654
    [72]. Q. Zhao, J.W. Qian, Q.F. An, Q. Yang, Z.L, Gui,Synthesis and characterization of solution-processable polyelectrolyte complexes and their homogeneous membranes, ACS Appl. Mater. Interfaces (2009), 1, pp. 90-96. https://doi.org/10.1021/am800037
    [73]. T. Mikami, H. Kitagawa, Biosynthesis, and function of chondroitin sulfate, Biochimica et Biophysica Acta (BBA)-General Subjects (2013), 1830(10), pp.4719-4733. https://doi.org/10.1016/j.bbagen.2013.06.006
    A. Vidyasagar, C. Sung, K. Losensky, J.L. Lutkenhaus, pH-Dependent thermal transitions in hydrated layer-by-layer assemblies containing weak polyelectrolytes, Macromolecules (2012), 45(22), pp.9169-9176. https://doi.org/10.1021/ma3020454
    [74]. S. Boddohi, C.E. Killingsworth, M.J. Kipper, Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin, Biomacromolecules (2008), 9(7), pp.2021-2028. https://doi.org/10.3390/polym13142254
    [75]. Li, H., Zhu, L., Zhu, X., Chao, M., Xue, J., Sun, D., Xia, F., Xue, Q.J.J.o.H.M., 2021B. Dual-functional membrane decorated with flower-like metal–organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. 408, 124444. doi.org/10.1016/j.jhazmat.2021.125677
    [76]. Zhu, X., Zhu, L., Li, H., Xue, J., Ma, C., Yin, Y., Qiao, X., Sun, D., Xue, Q.J.J.o.M.S., 2021a. Multifunctional charged hydrogel nanofibrous membranes for metal ions contained emulsified oily wastewater purification. 621, 118950. doi.org/10.1016/j.memsci.2020.118950
    [77]. Zhu, X., Zhu, L., Li, H., Zhang, C., Xue, J., Wang, R., Qiao, X., Xue, Q.J.J.o.M.S., 2021b. Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification. 630, 119324. doi.org/10.1016/j.memsci.2021.119324
    [78]. J. Kochan, T. Wintgens, J.E. Wong, T. Melin, Polyelectrolyte-modified polyethersulfone ultrafiltration membranes for wastewater treatment applications, Desalination and Water Treatment (2009), 9(1-3), pp.175-180. https://doi.org/10.5004/dwt.2009.768
    [79]. M.M. Li, S.J. Yao, Preparation of polyelectrolyte complex membranes based on sodium cellulose sulfate and poly (dimethyldiallylammonium chloride) and its permeability properties, J. Appl. Polym. Sci. (2009), 112, pp. 402-409 https://doi.org/10.1002/app.29407
    [80]. F.N. Lamari, N.K. Karamanos, Structure of chondroitin sulfate, Advances in Pharmacology (2006), 53, pp.33-48. https://doi.org/10.1016/j.carbpol.2020.116441
    [81]. M.P. Sousa, F. Cleymand, J.F. Mano, Elastic chitosan/chondroitin sulfate multilayer membranes, Biomedical Materials (2016), 11(3), p.035008. https://doi.org/10.1088/1748-6041/11/3/035008
    [82]. J.S. González, A. Burlaka, J. Paz, H.J. Salavagione, J. Carretero-González, R.Hernández, Compact polyelectrolyte hydrogels of gelatin and chondroitin sulfate as ion's mobile media in sustainable all-solid-state electrochemical devices, Materials Advances (2020), 1(7), pp.2526-2535. https://doi.org/10.1039/D0MA00514B
    [83]. J. He, G. Zhao, P. Mu, H. Wei, Y. Su, H. Sun, Z. Zhu, W. Liang, A. Li, Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation, Solar Energy Materials and Solar Cells (2019), 201, p.110111. https://doi.org/10.1016/j.solmat.2019.110111
    [84]. Z. Wu, S Hongrui, X. Zhiguang, C. Huanjie, L. Xiaomin, W. Shanchi, Z. Tao, Z. Yan, Underwater Mechanically Tough, Elastic, Superhydrophilic Cellulose Nanofiber-Based Aerogels for Water-in-Oil Emulsion Separation and Solar Steam Generation, ACS Applied Nano Materials (2021), 4(9), pp.8979-8989. https://doi.org/10.1021/acsanm.1c01597
    A. Prasannan, J. Udomsin, H.C. Tsai, M. Sivakumar, C.C. Hu, C.F. Wang, W.S. Hung, J.Y. Lai, Special wettable underwater superoleophobic material for effective simultaneous removal of high viscous insoluble oils and soluble dyes from wastewater. Journal of Membrane Science, (2020), 603, p.118026. https://doi.org/10.1016/j.memsci.2020.118026
    [85]. Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue, Carbohydrate polymers (2019), 205, pp.125-134. https://doi.org/10.1016/j.carbpol.2018.10.023
    [86]. V. Lincy, A. Prasannan, P.D. Hong, Rational design of multifunctional membrane material with underwater superoleophobicity for dye contaminated emulsion separation, Journal of Membrane Science (2021), 639, p.119716. https://doi.org/10.1016/j.memsci.2021.119716
    [87]. L. Shao, Z. Yu, X. Li, H. Zeng, Y. Liu, One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation, Applied Clay Science (2019), 181, p.105208. https://doi.org/10.1016/j.clay.2019.105208
    [88]. X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Tailoring graphene oxide‐based aerogels for efficient solar steam generation under one sun, Advanced materials (2017), 29(5), p.1604031. https://doi.org/10.1002/adma.201604031
    [89]. J. He, Z. Zhang, C. Xiao, F. Liu, H. Sun, Z. Zhu, W. Liang, A. Li, High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation, ACS applied materials & interfaces (2020), 12(14), pp.16308-16318. https://doi.org/10.1021/acsami.9b22832
    [90]. Z. Zhu, P. Mu, Y. Fan, W. Bai, Z. Zhang, H. Sun, W. Liang, A. Li, Highly efficient solar steam generation of bilayered ultralight aerogels based on N-rich conjugated microporous polymers nanotubes, European Polymer Journal (2020), 126, p.109560. https://doi.org/10.1016/j.eurpolymj.2020.109560
    [91]. D. Li, Q. Li, N. Bai, H. Dong, D. Mao, One-step synthesis of cationic hydrogel for efficient dye adsorption and its second use for emulsified oil separation, ACS Sustainable Chemistry & Engineering (2017), 6(11), pp.15858-15866.
    https://doi.org/10.1021/acssuschemeng.7b01083
    [92]. Dakhara, S., and C. Anajwala. "Polyelectrolyte complex: A pharmaceutical review." Systematic Reviews in Pharmacy 1, no. 2 (2010): 121.
    [93]. Mao, Shirui, U. D. O. Bakowsky, Anchalee Jintapattanakit, and Thomas Kissel. "Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin." Journal of pharmaceutical sciences 95, no. 5 (2006): 1035-1048.
    [94]. Mao, Shirui, U. D. O. Bakowsky, Anchalee Jintapattanakit, and Thomas Kissel. "Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin." Journal of pharmaceutical sciences 95, no. 5 (2006): 1035-1048.
    [95]. Zhang, Yanpu, Erol Yildirim, Hanne S. Antila, Luis D. Valenzuela, Maria Sammalkorpi, and Jodie L. Lutkenhaus. "The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes." Soft Matter 11, no. 37 (2015): 7392-7401.
    [96]. Chollakup, Rungsima, John B. Beck, Klaus Dirnberger, Matthew Tirrell, and Claus D. Eisenbach. "Polyelectrolyte molecular weight and salt effects on the phase behavior and coacervation of aqueous solutions of poly (acrylic acid) sodium salt and poly (allylamine) hydrochloride." Macromolecules 46, no. 6 (2013): 2376-2390.
    [97]. Wang, Hui, Changping Wang, Yuan Zou, Jingjing Hu, Yiwen Li, and Yiyun Cheng. "Natural polyphenols in drug delivery systems: Current status and future challenges." Giant 3 (2020): 100022.
    [98]. Prasannan, Adhimoorthy, Jittrakorn Udomsin, Hsieh-Chih Tsai, Mani Sivakumar, Chien-Chieh Hu, Chih-Feng Wang, Wei-Song Hung, and Juin-Yih Lai. "Special wettable underwater superoleophobic material for effective simultaneous removal of high viscous insoluble oils and soluble dyes from wastewater." Journal of Membrane Science 603 (2020): 118026.
    [99]. Wang, Xinyu, Yeli Fan, Junjie Yan, and Min Yang. "Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging." Chemical Engineering Journal (2022): 135661.
    [100]. Guo, Yuxin, Qing Sun, Fu‐Gen Wu, Yunlu Dai, and Xiaoyuan Chen. "Polyphenol‐Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery." Advanced Materials 33, no. 22 (2021): 2007356.
    [101]. Yazdi, Iman K., Arturas Ziemys, Michael Evangelopoulos, Jonathan O. Martinez, Milos Kojic, and Ennio Tasciotti. "Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials." Nanomedicine 10, no. 19 (2015): 3057-3075.
    [102]. Deshmukh, Prashant K., Ketan P. Ramani, Saurabh S. Singh, Avinash R. Tekade, Vivekanand K. Chatap, Ganesh B. Patil, and Sanjay B. Bari. "Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications." Journal of Controlled Release 166, no. 3 (2013): 294-306.
    [103]. Ariga, Katsuhiko, Yuri M. Lvov, Kohsaku Kawakami, Qingmin Ji, and Jonathan P. Hill. "Layer-by-layer self-assembled shells for drug delivery." Advanced drug delivery reviews 63, no. 9 (2011): 762-771.
    [104]. Faisal, M. "Innovations in Separations Technology for the Recycling of Rare Metals with Supercritical Carbon Dioxide." In Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, vol. 2, no. 2. 2012.
    [105]. Tong, Weijun, Xiaoxue Song, and Changyou Gao. "Layer-by-layer assembly of microcapsules and their biomedical applications." Chemical Society Reviews 41, no. 18 (2012): 6103-6124.
    [106]. Russo, Teresa, Pierpaolo Fucile, Rosa Giacometti, and Filomena Sannino. "Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Current state and future perspectives." Processes 9, no. 4 (2021): 719.
    [107]. Lincy, Varghese, Adhimoorthy Prasannan, and Po-Da Hong. "Rational design of multifunctional membrane material with underwater superoleophobicity for dye contaminated emulsion separation." Journal of Membrane Science 639 (2021): 119716.
    [108]. Zhang, Jialu, Xiangfeng Huang, Yongjiao Xiong, Weiwei Zheng, Wanqi Liu, Mengfan He, Lexue Li, Jia Liu, Lijun Lu, and Kaiming Peng. "Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions." Separation and Purification Technology 280 (2022): 119824.
    [109]. Zhao, Xueting, Runnan Zhang, Yanan Liu, Mingrui He, Yanlei Su, Congjie Gao, and Zhongyi Jiang. "Antifouling membrane surface construction: Chemistry plays a critical role." Journal of Membrane Science 551 (2018): 145-171.
    [110]. Huang, Wenqi, Huizi Tan, and Shaoping Nie. "Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides." Food Chemistry 373 (2022): 131608.
    [111]. Yang, Liwei, Lulu Han, Qi Liu, Yige Xu, and Lingyun Jia. "Galloyl groups-regulated fibrinogen conformation: Understanding antiplatelet adhesion on tannic acid coating." Acta biomaterialia 64 (2017): 187-199.
    [112]. M. Tao, L. Xue, F. Liu, L. Jiang, An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation, Advanced Materials 26 (2014) 2943-2948. https://doi.org/10.1002/adma.201305112.
    [113]. Nawi NI, Ong Amat S, Bilad MR, Nordin NA, Shamsuddin N, Prayogi S, Narkkun T, Faungnawakij K. Development of Polyvinylidene Fluoride Membrane via Assembly of Tannic Acid and Polyvinylpyrrolidone for Filtration of Oil/Water Emulsion. Polymers. (2021)13(6):976. 10.3390/polym13060976.
    [114]. Alam J, Alhoshan M, Shukla AK, Aldalbahi A, Ali FA. k-Carrageenan–A versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. European Polymer Journal (2019) 120:109219. https://doi.org/10.1016/j.eurpolymj.2019.109219.
    [115]. X. Zhu, W. Tu, K.H. Wee, R. Bai, Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties, Journal of membrane science 466 (2014) 36-44. https://doi.org/10.1016/j.memsci.2014.04.038.
    [116]. G. Kwon, E. Post, A. Tuteja, Membranes with selective wettability for the separation of oil-water mixtures, MRS Communications 5 (2015) 475-494. https://doi.org/10.1557/mrc.2015.61.
    [117]. X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li, Ultralong MnO2 nanowire enhanced multiwall carbon nanotube hybrid membrane with underwater superoleophobicity for efficient oil-in-water emulsions separation, Industrial & Engineering Chemistry Research 57 (2018) 10439-10447. https://doi.org/10.1021/acs.iecr.8b02577.
    [118]. Wang Z, Han M, Zhang J, He F, Peng S, Li Y. Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation. Journal of Membrane Science. (2020) 593:117383. https://doi.org/10.1016/j.memsci.2015.02.027.

    無法下載圖示 全文公開日期 2024/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE