簡易檢索 / 詳目顯示

研究生: 劉家鏵
Jia-Hua Liu
論文名稱: 利用常壓電漿系統製備聚乙烯基吡咯烷酮薄膜並應用於生醫材料
Preparation of Poly(n-vinylpyrrolidone) Thin Films by Atmospheric Pressure Plasma Jet for Applications in Biomaterials
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 何郡軒
Jinn-Hsuan Ho
林文賓
Wen-Pin Lin
王良宜
Liang-Yi Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 大氣電漿電漿聚合薄膜N-乙烯基吡咯烷酮界達電位抗蛋白質沾黏
外文關鍵詞: Atmospheric pressure plasma, Plasma polymerized films, N-vinylpyrrolidone, Zeta potential, Antifouling
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 摘要 I Abstract IV 圖目錄 X 表目錄 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目標 2 第二章 文獻回顧 3 2-1 電漿介紹 3 2-1-1 電漿定義 3 2-1-2 電漿技術的應用 4 2-2 常壓電漿之特性及應用 4 2-2.1 常壓電漿系統 4 2-3大氣電漿表面改質 10 2-4 電漿誘導接枝法及應用 10 2-4 電漿沉積聚合法及應用 13 2-5 pNVP薄膜的應用 16 2-5-1 pNVP薄膜之特性及應用 16 2-5-2 pNVP薄膜製備方法 16 第三章 實驗方法與儀器原理 18 3-1實驗藥品 18 3-1-1 基材準備 18 3-1-2 APPJ表面活化參數最適化 18 3-1-3 常壓電漿修飾 pNVP 薄膜前驅物 19 3-1-4 UV聚合法修飾pNVP薄膜所需藥品 20 3-1-5 蛋白質貼附所需藥品 20 3-1-6 生物毒性測試所需藥品 22 3-1-7 聚乙烯基吡咯烷酮薄膜之抗菌測試所需藥品 23 3-2 實驗方法 24 3-2-1常壓電漿系統 24 3-2-2利用常壓電漿接枝聚合 pNVP 薄膜 24 3-2-3 利用APPJ沉積pNVP 薄膜 25 3-2-3 利用UV 聚合法修飾pNVP 薄膜 26 3-2-4 蛋白質貼附實驗 26 3-2-5 聚乙烯基吡咯烷酮薄膜之生物毒性測試 27 3-2-6 聚乙烯基吡咯烷酮薄膜之抗菌測試 28 3.3分析儀器原理及方法 29 3-3-1 水接觸角量測儀 (Water contact angle measurement device) 29 3-3-2 全反射式傅立葉紅外線光譜儀 (Attenuated Total Reflectance Fourier-transform infrared spectroscopy, ATR-FTIR) 30 3-3-3 放射光譜儀 (optical emission spectroscopy, OES) 30 3-3-4 紫外光及可見光光譜儀 (UV-visible spectroscopy) 30 3-3-5 橢圓偏光儀 (ellipsometry) 31 3-3-6 固體表面界達電位分析儀 (electrokinetic analyzer) 31 3-3-7 統計學分析 (Statistical analysis) 32 第四章 結果與討論 33 4-1 常壓電漿組成以及常壓電漿參數對基材溫度影響 33 4-1-1 探討常壓電漿系統功率對電漿組成的影響 33 4-1-2 探討常壓電漿功率對電漿出口溫度的影響 34 4-1-3 探討常壓電漿功率對 PDMS 溫度的影響 34 4-1-4 探討石英管距離與電漿處理功率對隱形眼鏡溫度影響 34 4-1-5 探討載台移動速率以及電漿處理功率對隱形眼鏡溫度影響 34 4-2 利用 APPJ 誘導接枝pNVP 於 PDMS 35 4-2-1 pNVP 薄膜之化學組成鑑定 35 4-2-2 電漿沉積參數對 pNVP 薄膜表面親疏水性影響 36 4-2-3 pNVP 薄膜修飾之 PDMS 光穿透性質 36 4-2-4 探討修飾pNVP薄膜對蛋白質貼附的影響 36 4-2-5 探討常壓電漿接枝 pNVP 薄膜之疏水性回復 37 4-3 利用常壓電漿氣相沉積製備 pNVP 薄膜 37 4-3-1 PDMS 表面活化參數最適化 37 4-3-2 探討利用TMA 修飾與 PDMS 表面活化對 pNVP 薄膜化學組成影響 38 4-3-3 探討TMA修飾與PDMS表面活化對 pNVP 親疏水性影響 39 4-3-4 探討 TMA 修飾與 PDMS 表面活化對 pNVP 薄膜界達電位影響 39 4-3-5 不同電漿掃描次數對 pNVP 薄膜之化學組成影響 40 4-3-6 不同pH值環境下對pNVP薄膜界達電位影響 40 4-3-7 探討常壓電漿沉積 pNVP之沉積速率 41 4-3-8 探討常壓電漿沉積 pNVP 薄膜之蛋白質貼附性質 41 4-3-9 pNVP薄膜生物毒性測試 42 4-3-10 探討pNVP薄膜之抗菌特性 42 4-3-11 儲存環境及時間對 pNVP 薄膜化學組成的影響 43 4-3-12 儲存環境及時間對 pNVP 薄膜親疏水性影響 43 4-3-13 儲存環境及時間對 pNVP 薄膜界達電位影響 43 4-3-14 儲存時間對pNVP薄膜蛋白質貼附的影響 44 4-4 探討pH 值對 pNVP 薄膜蛋白質貼附影響 45 4-4-1 pH 值等於3環境下 pNVP 薄膜蛋白質貼附情形 45 4-4-2 pH 值等於5環境下 pNVP 薄膜蛋白質貼附情形 46 4-4-3 pH 值等於7.4環境下 pNVP 薄膜蛋白質貼附情形 46 4-4-4 pH 值等於10環境下 pNVP 薄膜蛋白質貼附情形 47 第五章 結論 77 Appendix 80 參考文獻 85

Kretlow, J.D. and A.G. Mikos, From material to tissue: biomaterial development, scaffold fabrication, and tissue engineering. AIChE Journal, 2008. 54(12): p. 3048-3067.
2. Wissing, T.B., V. Bonito, E.E. van Haaften, M. van Doeselaar, M.M. Brugmans, H.M. Janssen, C.V. Bouten, and A.I. Smits, Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Frontiers in Bioengineering and Biotechnology, 2019. 7: p. 87.
3. Arriaga, M.A., M.H. Ding, A.S. Gutierrez, and S.A. Chew, The Application of microRNAs in Biomaterial Scaffold‐Based Therapies for Bone Tissue Engineering. Biotechnology journal, 2019. 14(10): p. 1900084.
4. Kaczmarek, J.C., A. Tieppo, C.J. White, and M.E. Byrne, Adjusting biomaterial composition to achieve controlled multiple-day release of dexamethasone from an extended-wear silicone hydrogel contact lens. Journal of Biomaterials Science, Polymer Edition, 2014. 25(1): p. 88-100.
5. Sariri, R. and H. Ghafoori, Tear proteins in health, disease, and contact lens wear. Biochemistry (Moscow), 2008. 73(4): p. 381-392.
6. Morgan, P.B., N. Efron, C.A. Woods, and J. Santodomingo-Rubido, International survey of orthokeratology contact lens fitting. Contact Lens and Anterior Eye, 2019. 42(4): p. 450-454.
7. Nisol, B., G. Oldenhove, N. Preyat, D. Monteyne, M. Moser, D. Perez-Morga, and F. Reniers, Atmospheric plasma synthesized PEG coatings: non-fouling biomaterials showing protein and cell repulsion. Surface and Coatings Technology, 2014. 252: p. 126-133.
8. Brash, J.L., T.A. Horbett, R.A. Latour, and P. Tengvall, The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomaterialia, 2019. 94: p. 11-24.
9. Hedayati, M., M.M. Reynolds, D. Krapf, and M.J. Kipper, Nanostructured surfaces that mimic the vascular endothelial glycocalyx reduce blood protein adsorption and prevent fibrin network formation. ACS Applied Materials & Interfaces, 2018. 10(38): p. 31892-31902.
10. Zada, T., M. Reches, and D. Mandler, Antifouling and antimicrobial coatings based on sol–gel films. Journal of Sol-Gel Science and Technology, 2020: p. 1-11.
11. Cho, Y., D. Cho, J.H. Park, M.W. Frey, C.K. Ober, and Y.L. Joo, Preparation and characterization of amphiphilic triblock terpolymer-based nanofibers as antifouling biomaterials. Biomacromolecules, 2012. 13(5): p. 1606-1614.
12. Yin, Z., C. Cheng, H. Qin, C. Nie, C. He, and C. Zhao, Hemocompatible polyethersulfone/polyurethane composite membrane for high‐performance antifouling and antithrombotic dialyzer. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015. 103(1): p. 97-105.
13. Wang, S.-Y., L.-F. Fang, L. Cheng, S. Jeon, N. Kato, and H. Matsuyama, Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption. Journal of Membrane Science, 2018. 564: p. 672-681.
14. Buxadera-Palomero, J., C. Canal, S. Torrent-Camarero, B. Garrido, F. Javier Gil, and D. Rodríguez, Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases, 2015. 10(2): p. 029505.
15. Van Guyse, J.F., P. Cools, T. Egghe, M. Asadian, M. Vergaelen, P. Rigole, W. Yan, E.M. Benetti, V.-V. Jerca, and H. Declercq, Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications. ACS Applied Materials & Interfaces, 2019. 11(34): p. 31356-31366.
16. Smith, L.E., S. Rimmer, and S. MacNeil, Examination of the effects of poly (N-vinylpyrrolidinone) hydrogels in direct and indirect contact with cells. Biomaterials, 2006. 27(14): p. 2806-2812.
17. Liu, X., Y. Xu, Z. Wu, and H. Chen, Poly (N‐vinylpyrrolidone)‐modified surfaces for biomedical applications. Macromolecular Bioscience, 2013. 13(2): p. 147-154.
18. Sun, W., W. Liu, Z. Wu, and H. Chen, Chemical surface modification of polymeric biomaterials for biomedical applications. Macromolecular Rapid Communications, 2020. 41(8): p. 1900430.
19. De Silva, D.A., B.U. Hettiarachchi, L. Nayanajith, M.Y. Milani, and J. Motha, Development of a PVP/kappa-carrageenan/PEG hydrogel dressing for wound healing applications in Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 2011. 39(1).
20. Vishwakarma, N.K., V.K. Patel, P. Mitra, K. Ramesh, K. Mitra, S. Vishwakarma, K. Acharya, N. Misra, P. Maiti, and B. Ray, Synthesis of ABA-type double hydrophilic amphiphilic PU-based block copolymers of poly (N-Vinylpyrrolidone) and poly (N-isopropylacrylamide) via click chemistry. Journal of Macromolecular Science, Part A, 2021. 58(3): p. 192-205.
21. Mishra, A.K., J. Lim, J. Lee, S. Park, Y. Seo, H. Hwang, and J.K. Kim, Control drug release behavior by highly stable and pH sensitive poly (N-vinylpyrrolidone)-block-poly (4-vinylpyridine) copolymer micelles. Polymer, 2021. 213: p. 123329.
22. Shahbuddin, M., A.J. Bullock, S. MacNeil, and S. Rimmer, Glucomannan-poly (N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. Journal of Materials Chemistry B, 2014. 2(6): p. 727-738.
23. Billings, B.G., M.W. Urban, C.M. Greenlief, and K.L. Wooley, Amphiphilic Crosslinked Networks Produced From the Vulcanization of Nanodomains Within Thin Films of Poly (N-vinylpyrrolidinone)-b-Poly (isoprene). Synthesis and investigation of UV-cured, complex amphiphilic polymer films for use in anti-biofouling applications, 2010. 25(16): p. 147.
24. Muneekaew, S., K.-C. Chang, A. Kurniawan, Y. Shirosaki, and M.-J. Wang, Microwave plasma treated composites of Cu/Cu2O nanoparticles on electrospun poly (N-vinylpyrrolidone) fibers as highly effective photocatalysts for reduction of organic dyes and 4-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 2020. 107: p. 171-181.
25. Grill, A., Cold plasma in materials fabrication. Vol. 151. 1994: IEEE Press, New York.
26. Khelifa, F., S. Ershov, Y. Habibi, R. Snyders, and P. Dubois, Free-radical-induced grafting from plasma polymer surfaces. Chemical reviews, 2016. 116(6): p. 3975-4005.
27. Vandenbossche, M. and D. Hegemann, Recent approaches to reduce aging phenomena in oxygen-and nitrogen-containing plasma polymer films: An overview. Current Opinion in Solid State and Materials Science, 2018. 22(1): p. 26-38.
28. Bittencourt, J.A., Fundamentals of plasma physics. 2013: Springer Science & Business Media.
29. Nikiforov, A. and Z. Chen, Atmospheric Pressure Plasma: from Diagnostics to Applications. 2019: BoD–Books on Demand.
30. Speranza, G., W. Liu, and L. Minati, Applications of Plasma Technologies to Material Processing. 2019: CRC Press.
31. Aiman, A., M.Y. Ong, S. Nomanbhay, and P.L. Show, Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review. Environmental Research, 2021: p. 111204.
32. Lieberman, M.A. and A.J. Lichtenberg, Principles of plasma discharges and materials processing. 2005: John Wiley & Sons.
33. Artemyev, A., V. Angelopoulos, and J. McTiernan, Near‐Earth solar wind: Plasma characteristics from ARTEMIS measurements. Journal of Geophysical Research: Space Physics, 2018. 123(12): p. 9955-9962.
34. Moreno‐Couranjou, M., F. Palumbo, E. Sardella, G. Frache, P. Favia, and P. Choquet, Plasma Deposition of Thermo‐Responsive Thin Films from N‐Vinylcaprolactam. Plasma Processes and Polymers, 2014. 11(9): p. 816-821.
35. Weiss, M., D. Gümbel, E.-M. Hanschmann, R. Mandelkow, N. Gelbrich, U. Zimmermann, R. Walther, A. Ekkernkamp, A. Sckell, and A. Kramer, Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PloS one, 2015. 10(7): p. e0130350.
36. Mandolfino, C., E. Lertora, C. Gambaro, and M. Pizzorni, Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers, 2019. 11(2): p. 202.
37. Siow, K.S., S. Kumar, and H.J. Griesser, Low‐Pressure Plasma Methods for Generating Non‐Reactive Hydrophilic and Hydrogel‐Like Bio‐Interface Coatings–A Review. Plasma Processes and Polymers, 2015. 12(1): p. 8-24.
38. Susto, G.A., A. Beghi, and S. McLoone. Anomaly detection through on-line isolation forest: An application to plasma etching. in 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). 2017. IEEE.
39. Yoozbashizadeh, M., M. Chartosias, C. Victorino, and D. Decker, Investigation on the effect of process parameters in atmospheric pressure plasma treatment on carbon fiber reinforced polymer surfaces for bonding. Materials and Manufacturing Processes, 2019. 34(6): p. 660-669.
40. Akhavan, B., M. Croes, S.G. Wise, C. Zhai, J. Hung, C. Stewart, M. Ionescu, H. Weinans, Y. Gan, and S.A. Yavari, Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications. Applied Materials Today, 2019. 16: p. 456-473.
41. Cools, P., H. Declercq, N. De Geyter, and R. Morent, A stability study of plasma polymerized acrylic acid films. Applied Surface Science, 2018. 432: p. 214-223.
42. Abessolo Ondo, D., F. Loyer, J.B. Chemin, S. Bulou, P. Choquet, and N.D. Boscher, Atmospheric plasma oxidative polymerization of ethylene dioxythiophene (EDOT) for the large‐scale preparation of highly transparent conducting thin films. Plasma Processes and Polymers, 2018. 15(4): p. 1700172.
43. Schutze, A., J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, and R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
44. Fanelli, F. and F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials. Surface and Coatings Technology, 2017. 322: p. 174-201.
45. Winter, J., R. Brandenburg, and K. Weltmann, Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Science and Technology, 2015. 24(6): p. 064001.
46. Napartovich, A., Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas and Polymers, 2001. 6(1-2): p. 1-14.
47. Gibalov, V.I. and G.J. Pietsch, Properties of dielectric barrier discharges in extended coplanar electrode systems. Journal of Physics D: Applied Physics, 2004. 37(15): p. 2093.
48. Müller, S. and R.J. Zahn, Air pollution control by non‐thermal plasma. Contributions to Plasma Physics, 2007. 47(7): p. 520-529.
49. Lu, W., Y. Abbas, M.F. Mustafa, C. Pan, and H. Wang, A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds. Frontiers of Environmental Science & Engineering, 2019. 13(2): p. 1-19.
50. Theapsak, S., A. Watthanaphanit, and R. Rujiravanit, Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS applied Materials & Interfaces, 2012. 4(5): p. 2474-2482.
51. Paisoonsin, S., O. Pornsunthorntawee, and R. Rujiravanit, Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Applied Surface Science, 2013. 273: p. 824-835.
52. Tendero, C., C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(1): p. 2-30.
53. Nolan, H., D. Sun, B.G. Falzon, S. Chakrabarti, D.B. Padmanaba, P. Maguire, D. Mariotti, T. Yu, D. Jones, and G. Andrews, Metal nanoparticle‐hydrogel nanocomposites for biomedical applications–An atmospheric pressure plasma synthesis approach. Plasma Processes and Polymers, 2018. 15(11): p. 1800112.
54. D’Sa, R.A., J. Raj, M.A.S. McMahon, D.A. McDowell, G.A. Burke, and B.J. Meenan, Atmospheric pressure plasma induced grafting of poly (ethylene glycol) onto silicone elastomers for controlling biological response. Journal of Colloid and Interface science, 2012. 375(1): p. 193-202.
55. Chang, Y., W.-J. Chang, Y.-J. Shih, T.-C. Wei, and G.-H. Hsiue, Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1228-1237.
56. Chen, J.-S., Y.-S. Ting, H.-M. Tsou, and T.-Y. Liu, Highly hydrophilic and antibiofouling surface of zwitterionic polymer immobilized on polydimethylsiloxane by initiator-free atmospheric plasma-induced polymerization. Surface and Coatings Technology, 2018. 344: p. 621-625.
57. Ramkumar, M., K.N. Pandiyaraj, A.A. Kumar, P. Padmanabhan, P. Cools, N. De Geyter, R. Morent, S.U. Kumar, V. Kumar, and P. Gopinath, Atmospheric pressure non-thermal plasma assisted polymerization of poly (ethylene glycol) methylether methacrylate (PEGMA) on low density polyethylene (LDPE) films for enhancement of biocompatibility. Surface and Coatings Technology, 2017. 329: p. 55-67.
58. Cools, P., N. De Geyter, E. Vanderleyden, F. Barberis, P. Dubruel, and R. Morent, Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface and Coatings Technology, 2016. 294: p. 201-209.
59. Pieracci, J., J.V. Crivello, and G. Belfort, Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. Journal of Membrane S cience, 1999. 156(2): p. 223-240.
60. Luan, S., J. Zhao, H. Yang, H. Shi, J. Jin, X. Li, J. Liu, J. Wang, J. Yin, and P. Stagnaro, Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B: Biointerfaces, 2012. 93: p. 127-134.
61. Andersen, T.E., Y. Palarasah, M.-O. Skjødt, R. Ogaki, M. Benter, M. Alei, H.J. Kolmos, C. Koch, and P. Kingshott, Decreased material-activation of the complement system using low-energy plasma polymerized poly (vinyl pyrrolidone) coatings. Biomaterials, 2011. 32(20): p. 4481-4488.
62. Lewis, G.T., G.R. Nowling, R.F. Hicks, and Y. Cohen, Inorganic surface nanostructuring by atmospheric pressure plasma-induced graft polymerization. Langmuir, 2007. 23(21): p. 10756-10764.
63. Huhtamäki, T., X. Tian, J.T. Korhonen, and R.H. Ras, Surface-wetting characterization using contact-angle measurements. Nature protocols, 2018. 13(7): p. 1521-1538.
64. Cantir, C. and J. Kaarbo, Contested roles and domestic politics: reflections on role theory in foreign policy analysis and IR theory. Foreign policy analysis, 2012. 8(1): p. 5-24.
65. Civiš, S., I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. Chernov, Time-resolved fourier-transform infrared emission spectroscopy of Ag in the (1300–3600)-cm− 1 region: Transitions involving f and g states and oscillator strengths. Physical Review A, 2010. 82(2): p. 022502.
66. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. 2013: Springer Science & Business Media.
67. Salgin, S., U. Salgin, and N. Soyer, Streaming potential measurements of polyethersulfone ultrafiltration membranes to determine salt effects on membrane zeta potential. Int. J. Electrochem. Sci, 2013. 8(3): p. 4073-4084.
68. Barr, T.L., Modern ESCA: The principles and practice of X-ray photoelectron spectroscopy. 2020: CRC press.
69. Ratner, B.D. and D.G. Castner, Electron spectroscopy for chemical analysis. Surface analysis: the principal techniques, 2009. 2: p. 374-381.

無法下載圖示 全文公開日期 2031/09/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE