簡易檢索 / 詳目顯示

研究生: 張登章
Teng-Chang Chang
論文名稱: 基於視覺品質需求下有機發光二極體即時節能圖像轉換顯示方法
Real-Time Energy-Saving Display Transformation Schemes Based on Quality on Demand for OLED Displays
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 蘇順豐
Shun-Feng Su
楊谷洋
Kuu-Young Young
蔡明忠
Ming-Jong Tsai
陶金旺
Chin-Wang Tao
王偉彥
Wei-Yen Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 93
中文關鍵詞: 節能有機發光二極體即時結構相似性指標峰值訊噪比
外文關鍵詞: Energy-Saving, OLED, Real-Time, SSIM, PSNR
相關次數: 點閱:874下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體 (OLED)是下一代電子產品顯示器的重要技術。 OLED面板已經正在快速應用於行動裝置,如智能手機,平板電腦,計算機等,甚至有望在較大的面板數位電視上使用。 OLED顯示器與液晶顯示器 (LCD)主要不同,在顯示像素發光方式。LCD需要背光模組,而OLED顯示器面板不需背光模組,它的每個R,G和B分量顯示像素具自體發光能力。比較一般應用而言,OLED顯示器比LCD顯示器節省約40%顯示能量,然而,相對於裝置系統其他元件,OLED面板仍然是一個比較耗能的元件。 OLED相較於LCD有以下優點:視角較廣、反應時間較快、無殘影現象、面板厚度較薄、使用溫度範圍較大及發光效率較高; 有以下缺點:使用壽命較短,色彩純度不足及大尺寸開發技術仍待加強。
    OLED顯示器的低耗能技術,有幾個系統方法:使用為基礎的控制(usage-based control) 、部分顯示關閉 (partial display turn off) 、顏色重映射 (color remapping)和動態電壓縮放 (dynamic voltage scaling)。色彩重映射對OLED面板的顯示能量有很大的影響。不幸的是,顏色重映射並不具彈性。這通常涉及急劇變化的色調顯示,如使用者圖形界面使用省電色調,使用者未必會接受。另一方面,動態電壓縮放,雖然不會急劇變化的色調顯示,但它需要改變OLED硬體控制模組,並且需要根據電壓的變化,動態進行像素顏色補償,這是使用上限制。
    本文將提出OLED即時節能顯示方法,這將基於基於顯示能量的HSV顏色空間的節能方法。具體來說,它允許顯示節能,同時提供滿足基於PSNR,SSIM和 Entrop-SSIM圖像質量評估的個人的視覺要求。本文有以下貢獻:1)提出的即時品質需求下圖像轉換方法對現有行動裝置可達到節能顯示效果; 2)提出的方法提供使用彈性,克服現有OLED節能方法的限制; 3)用黑色背景圖像物件搜索的節能顯示方法,在PSNR=40分貝下,可以減少高達74%的顯示能量; 4)當SSIM為0.9時高品質圖像轉換下,可達16%〜20%的節能顯示效果; 5)以S3智能手機CPU執行節能顯示轉換,能夠處理高達每秒27高清晰度圖像,這表示本文所提出的方法適合用於高品質的影片節能顯示播放。


    Organic light-emitting diode (OLED) is the technology utilized for the next generation of flat-panel displays. OLED panels are already making rapid inroads into mobile devices, such as smart phones, tablets, computers, and are even expected for use in larger panel digital televisions. An OLED display is radically different from a Liquid Crystal Display (LCD), in terms of how the display pixels emit light. Unlike an LCD, which requires a backlight module to illuminate through the red (R), green (G), and blue (B) throttling light gates of a pixel, each display pixel in an OLED display panel actively emits its own R, G, and B components of light. Comparatively, an OLED display is about 40% more efficient than an LCD in the consumption of electrical energy for generating the display. However, compared to other components in an OLED display device, the OLED panel is still a relatively energy-hungry component. It places significant strain on the battery of the mobile device and, therefore, constitutes an important issue in the overall energy conservation system of the device. OLED compared to LCD, has the following advantages: wider viewing angle, fast response time, no image retention, the panel thinner, larger operation temperature range and high luminous efficiency. But has the following disadvantages: shorter usage life cycle, lack of color purity, and large-size technology has yet to be developed.
    There are several system level low energy techniques dealing with OLED displays: usage-based control, partial display turn off, color remapping and dynamic voltage scaling. Color remapping has a big impact on the OLED panel power consumption. Unfortunately, color remapping is not always feasible. This usually involves drastically changing the color hue or tone of displays such as for GUI and application software screens. On the other hand, the dynamic voltage scaling, while free from the drastic display theme changes and possible for real-time processing, but it requires additional color compensation to compensate the pixels of which the driving currents change under the scaled voltage, it is the usage limitation.
    This dissertation will propose serval real-time quality-on-demand energy-saving schemes for OLED display, which is on the basis of power consumption based HSV color space. Specifically, it allows for the implementation of display energy-saving while delivering precise dynamic and real-time color transformation display that meets personal visual requirements based on PSNR, SSIM and Entropy-SSIM image quality assessment. This dissertation has following contributions: 1) the proposed real-time color transformation schemes allow to quality-on-demand save display power consumption for the existing portable device, 2) the proposed schemes provide flexibility to overcome the limitation of the existing OLED energy-saving solutions, 3) the schemes with black background object-image searching save display power consumption up to 74% under the condition PSNR=40 dB predicted, 4) while the SSIM is set to be 0.9, the proposed schemes can reduce up to 16%~20% OLED display power consumption, and 5) the proposed schemes executed by S3 smartphone CPU are able to process up to 27 high-definition images per second, which indicates the proposed schemes are suitable for energy-saving video playback.

    致謝....................................................I 摘要....................................................II Abstract................................................III Table of Content........................................VI Nomenclature............................................VIIII List of Figures.........................................IX List of Tables..........................................XIII Chapter 1 - Introduction................................1 1.1 Background and Motivation...........................1 1.2 History of OLED................................. ...6 1.3 Basic Principles of OLED Technology............... 8 1.4 Dissertation Overview...............................13 Chapter 2 - Research Theory.............................15 2.1 PSNR-based Quality-On-Demand Energy-Saving Scheme on Power consumption HSV for OLED Displays.................15 2.2 SSIM-Based Quality-On-Demand Energy-Saving Scheme...22 2.3 Entropy-SSIM-Based Quality-On-Demand Energy-Saving Scheme ........................................................30 2.4 Image-Object Quality-On-Demand Energy-Saving Scheme 34 Chapter 3 - Experimental Environment Setting and Results ........................................................36 3.1 Evaluating the Expected and Measured Values.........36 3.2 Evaluating the Expected and Measured PSNR Values....39 3.3 Evaluating the Expected and Measured SSIM Values....41 3.4 Enhancing the Schemes with Grayscale Histogram......43 3.5 Evaluating the Scheme with MSSIM....................47 3.6 Measuring Energy-Saving with SSIM-Based Prediction..52 3.7 Measuring Entropy-SSIM-Based Prediction on Fast Energy Saving..................................................54 3.8 Measuring Image-Object Prediction on Fast Energy Saving ........................................................60 3.9 Discussion of Real-Time Processing Capability.......64 Chapter 4 - Conclusion and Future Work..................67 References..............................................69 Publication List........................................79 Appendix: Related Color Space and Image Quality Assessment ........................................................81 A.1 Related Color Space and Image Quality Assessment for OLED Energy-Saving...........................................81 A.1.1 RGB Color Space...................................81 A.1.2 YUV Color Space...................................83 A.1.3 HSV Color Space...................................85 A.1.4 Lab Color Space andΔE Color Difference............86 A.1.5 Image Quality Assessment (MSE/PSNR/SSIM)..........88 A.2 Appendix Reference..................................91 Vita....................................................93

    [1] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power-saving color transformation of mobile graphical user interfaces on OLED-based displays,” ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 339-342, San Fancisco, CA, USA, Aug. 19-21, 2009.
    [2] D. Shin, K. Kim, N. Chang, and M. Pedram,“Battery cell configuration for organic light emitting diode display in modern smartphones and tablet-PCs,”Computer-Aided Design (ICCAD), IEEE/ACM International Conference, pp. 679 -686, San Jose, California, USA, Nov. 5-8, 2012.
    [3] X. Chen, J. Zheng, Y. Chen, M. Zhao, and C. J. Xue, “Quality-retaining OLED dynamic voltage scaling for video streaming applications on mobile devices,” ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1000-1005, San Francisco, California, USA, Jun. 3-7, 2012.
    [4] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, “Energy-adaptive display system designs for future mobile environments,” International Conference on Mobile Systems, Applications and Services (MobiSys), pp. 245-258, San Francisco, California, USA, May 5-8, 2003.
    [5] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” USENIX Conference on USENIX Annual Technical Conference (USENIXATC), pp. 21-21, Boston, MA, USA, Jun. 22–25, 2010.
    [6] M. Dong, and L. Zhong, “Self-constructive high-rate system energy modeling for battery-powered mobile Systems,” International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 335-348, Bethesda, Maryland, USA, Jun. 28~Jul. 1, 2011.
    [7] S. Kunic and Z. Sego, “OLED technology and displays,” ELMAR, 2012 Proceedings, pp. 31-35, Sep. 2012.
    [8] B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED),” Polym Int., vol 55, pp. 572-582, Feb. 2006.
    [9] A. Iranli, W. Lee, and M. Pedram, “HVS-aware dynamic backlight scaling in TFT-LCDs,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, no. 10, pp. 1103-1116, Oct. 2006.
    [10] X. Gao, W. Lu, and D. Tao, “Image quality assessment and human visual system,” Proc. SPIE 7744, Visual Communications and Image Processing, 77440Z, Aug. 2010.
    [11] C. T. E. R. Hewage, S. T. Worral, S. Dogan, S. Villette, and A. M. Kondoz, “Quality evaluation of color plus depth map-based stereoscopic video,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 2, pp. 304-318, Apr. 2009.
    [12] X. Gao, W. Lu, D. Tao, and X. Li, “Image quality assessment based on multiscale geometric analysis,” IEEE Trans. Image Processing, vol. 18, no. 7, pp.1409-1423, Jul. 2009.
    [13] Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile applications,” ACM Symposium on Operating Systems Principles (SOSP), pp. 48-63, Dec. 1999.
    [14] M. Dong and L. Zhong, “Chameleon: a color-adaptive web browser for mobile OLED displays,” IEEE Trans. Mobile Computer, vol. 11, no. 5, pp. 724-738, May 2012.
    [15] M. Dong and L. Zhong, “Power Modeling and Optimization for OLED Displays,” IEEE Trans. Mobile Computing, vol. 11, Issue: 9, pp. 1587-1599, Sep. 2012.
    [16] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power modeling of graphical user interfaces on OLED displays,” Annual Design Automation Conference (DAC), pp. 652-657, San Francisco, California, USA, Jul. 26-31, 2009.
    [17] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic voltage scaling of OLED displays,” Design Automation Conference (DAC), pp. 53-58, San Diego, California, USA, Jun. 5-9, 2011.
    [18] X. Chen, J. Zeng, Y. Chen, W. Zhang, and H. Li, “Fine-grained dynamic voltage scaling on OLED display,” Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 807-812, Sydney, NSW, Australia, Jan. 30-Feb. 2, 2012.
    [19] E.-J. Song, H. Jeong, and H. Nam, “Low power AMOLED driving scheme based on reduced data supply voltage,” Asia Symposium on Quality Electronic Design (ASQED), pp. 78-81, Penang, Malaysia, Jul. 10-11, 2012.
    [20] Y. Chen, X. Chen, M. Zhao, and C. J. Xue, “Mobile devices user — the subscriber and also the publisher of real-time OLED display power management plan,” The International Conference on Computer-Aided Design (ICCAD), pp. 687-690, San Jose, CA, USA, Nov. 5-8, 2012.
    [21] A. Rahmati, C. Shepard, C. Tossell, M. Dong, Z. Wang, L. Zhong, and P. T. Kortum, “Tales of 34 iPhone users: how they change and why they are different,” Computing Research Repository (CoRR), Jun. 2011.
    [22] Y.-K. Lai, Y.-F. Lai, and P.-Y. Chen, “Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis,” Journal of Display Technology, vol. 7, no. 10, pp. 550-555, Oct. 2011.
    [23] F.-C. Cheng and S.-C. Huang, “Efficient histogram modification using bilateral Bezier curve for the contrast enhancement,” Journal of Display Technology, vol. 9, no. 1, pp.44-50, Jan. 2013.
    [24] C. Lee, C. Lee, and C.-S. Kim, “Power-Constrained Contrast Enhancement for OLED Displays Based on Histogram Equalization,” IEEE International Conference on Image Processing (ICIP), pp. 1689-1692, Hong Kong, China, Sep. 26-29, 2010.
    [25] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
    [26] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” International Conference on Pattern Recognition (ICPR), pp. 2366-2369, Istanbul, Turkey, Aug. 23-26, 2010.
    [27] S. Lal and M. Chandra, “Efficient Algorithm for Contrast Enhancement of Natural Images,” The International Arab Journal of Information Technology, vol. 11, no. 1, pp. 95-102, Jan. 2014.
    [28] S.S. Agaian, B. Silver, and K.A. Panetta, “Transform Coefficient Histogram-Based Image Enhancement Algorithms Using Contrast Entropy, ” IEEE Trans. Image Processing, vol.16, no.3, pp. 741-758, Mar. 2007.
    [29] S.S. Agaian, B. Silver, and K.A. Panetta, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Processing, vol.10, no.3, pp. 367-382, Mar. 2001.
    [30] http://en.wikipedia.org/wiki/OLED, accessed 2015/05/22.
    [31] A. Bernanose, M. Comte, and P. Vouaux, “a new method of emission of light by certain organic compounds,” J. Chem. Phys., vol. 50, pp. 64-68, Jan. 1953.
    [32] A. Bernanose, and P. Vouaux, “organic electroluminescence type of emission,” J. Chem. Phys., vol. 50, pp. 261-263, Jan. 1953.
    [33] A. Bernanose, “The mechanism of organic electroluminescence,” J. Chem. Phys., vol. 52, pp. 396-400, May 1955.
    [34] A. Bernanose, “Electroluminescence of organic compounds,” Br. J. Appl. Phys., vol. 6, pp. 54-56, Jan. 1955.
    [35] H. Kallmann and M. Pope, “Positive Hole Injection into Organic Crystals,” J. Chem. Phys., vol.32, pp.300, Nov. 1960.
    [36] H. Kallmann and M. Pope, “Bulk Conductivity in Organic Crystals,” Nature, vol.186, pp. 31, Apr. 1960.
    [37] Mark, Peter, Helfrich, and Wolfgang, “Space-Charge-Limited Currents in Organic Crystals,” J. Appl. Phys., vol. 33, pp. 205-215, Jan. 1962.
    [38] R. Partridge, “Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations,” Polymer, vol. 24, pp. 733-738, Jun. 1983.
    [39] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, pp. 913-915, Jul. 1987.
    [40] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-541, Oct. 1990.
    [41] S. Toffanin, http://www.lamp-project.eu/Edu/what-are-oleds-and-olets.
    [42] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Brdas, M. Lgdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature, vol. 397, pp. 121-128, Jan. 1999.
    [43] E. M. Conwell and M. W. Wu, “Contact injection into polymer light-emitting diodes,” Appl. Phys. Lett., vol. 70, pp. 1867-1869, Feb. 1997.
    [44] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bassler, “Charge injection into light-emitting diodes: theory and experiment,” J. Appl. Phys., vol. 84, pp. 848-856, Apr.1998.
    [45] K. Lin, P. Chen, R.S. Kumar, A.P. Burden, and S.-J. Chua, "INdium-Tin-Oxide-Free Organic Light-Emitting Devices,” IEEE Trans. Electron Devices, vol. 53, pp. 1483-1486, Jun. 2006.
    [46] T.-C. Chang and S. S.-D. Xu, “Real-time quality-on-demand energy-saving schemes for OLED-based displays,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 1-5, Taipei, Taiwan, May 28-31, 2013.
    [47] T.-C. Chang and S. S.-D. Xu, “Object-image-based quality-on-demand energy saving schemes for OLED displays,” Electronics Letters, vol. 50, no. 22, pp. 1595-1596, Oct. 2014.
    [48] T.-C. Chang, S. S.-D. Xu, and S.-F. Su, “SSIM-based quality-on-demand energy-saving schemes for OLED displays,” IEEE Trans. Systems, Man, and Cybernetics: Systems, accepted as a regular paper in 2015
    [49] A. R. Smith, “Color gamut transform pairs,” Annual Conference on Computer Graphics and Interactive Techniques, pp. 12-19, New York, USA, Aug.23-25, 1978.
    [50] X. Chen, J. Zheng, Y. Chen, M. Zhao, and C. J. Xue, “Quality-retaining OLED dynamic voltage scaling for video streaming applications on mobile devices,” ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1000-1005, Jun. 2012.
    [51] Y. Shi, Y. Ding, R. Zhang, and J. Li, “Structure and hue similarity for color image quality assessment,” International Conference on Electronic Computer Technology, pp. 329-333, Macau, China, Feb. 20-22, 2009.
    [52] N. Thakur and S. Devi, “A new method for color image quality assessment,” International Journal of Computer Applications, vol. 15, no. 2, pp. 10-17, Feb. 2011.
    [53] A. Kolaman and O. Yadid-Pecht, “Quaternion structural similarity: a new quality index for color images,” IEEE Trans. Image Processing, vol. 21, no. 4, pp. 1526-1536, Apr. 2012.
    [54] H. Kikuchi, S. Kataoka, S. Muramatsu, and H. Huttunen, “Color-tone similarity on digital images,” Image Processing (ICIP), pp. 1-4, Melbourne, VIC, Australia, Sep. 15-18, 2013.
    [55] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, LIVE Image Quality Assessment Database Release 2. [Online]. Available: http://live.ece.utexas.edu/research/quality/release2/databaserelease2.zip.
    [56] N.R. Pal and S.K. Pal, “Entropy: A new definition and its applications,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 21, no. 5, pp.1260-1270, Sep./Oct. 1991.
    [57] X. Chen, H. Zhao, P. Liu, B. Zhou, and W. Ren, “Automatic salient object detection via maximum entropy estimation,” OPTICS LETTERS, vol. 38, no. 10, pp. 1727-1729, May 2013.
    [58] P. Miao, Z. Chao, Y. Zhang, N. Li, and N. V. Thakor, “Entropy analysis reveals a simple linear relation between laser speckle and blood flow,” OPTICS LETTERS, vol. 39, no. 13, pp. 3907-3910, Jul. 2014.
    [59] L. Tony, P. W. Hao, C. Xu, and J. F. Feng, “Hybrid image coding for real-time computer screen video transmission,”Visual Communications and Image Processing 2004. Edited by Panchanathan, Sethuraman; Vasudev, Bhaskaran. Proceedings of the SPIE, vol. 5308, pp. 946-957, Jan. 2004.
    [60] X. Zhang and H. Takahashi, “A Hybrid Data Compression Scheme for Improved VNC,”Systemics, Cybernetics and Informatics, vol. 5, pp.1-4, Mar. 2007.
    [61] D. J. Jagannath and S. Pandiaraj, “Lossless Compression of a Desktop Image for Transmission,” International Journal of Recent Trends in Engineering, vol 2, no. 3, Nov. 2009.
    [62] L. He, D. Tao, X. Li, and X. Gao, “Sparse representation for blind image quality assessment,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1146-1153, Providence, RI, USA, Jun. 16-21, 2012.
    [63] F. Gao, D. Tao, X. Gao, and X. Li, “Learning to rank for blind image quality assessment,” Computing Research Repository (CoRR), Sep. 2013.
    [64] B. Xu, P. Guo, and C. L. P. Chen, “An adaptive regularization method for sparse representation,” Integrated Computer-Aided Engineering, vol. 21, issue 1, pp. 91-100, Jan. 2014.
    [65] W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via deep learning,” IEEE Trans. Neural Networks and Learning Systems, no.99, accepted, Aug. 2014.

    無法下載圖示 全文公開日期 2021/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE