簡易檢索 / 詳目顯示

研究生: 邱建文
Chien-Wen Chiu
論文名稱: 應用於生醫系統之功率放大器
Power Amplifiers for Biomedical System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
Chang-Fa Yang
曾昭雄
Chao-Hsiung Tseng
邱弘緯
Hung-Wei Chiu
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 55
中文關鍵詞: 功率放大器阻抗轉換器微波單晶體電路第五代行動通訊微波加熱
外文關鍵詞: Power amplifier, Transformer, Monolithic microwave integrated circuit, 5G mobile networks, Microwave heating.
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並製作功率放大器,適用於非侵入式血糖量測系統之E型功率放大器以及適用於雷達以及第五代行動通訊操作頻率之AB型功率放大器,實現於台積電CMOS 90 nm 1P9M製程。設計並製作晶片加熱系統之功率放大器,實現於台積電CMOS 0.18 um 1P6M製程。
    非侵入式血糖偵測系統之發射機操作於28 GHz 至 30 GHz,發射機中的E型功率放大器架構採用兩級架構,包含疊接架構做為功率輸出級以提供足夠之線性度,以及輸入驅動級提供足夠增益,緩衝器連接震盪器以及功率放大器,將震盪器的雙端訊號轉至單端訊號給功率放大器,發射機實現於台積電CMOS 90 nm 1P9M製程其面積為1.05×1.34 mm2,第一級電源電壓為1 V時消耗電流8.8 mA,第二級電源電壓為2V時消耗電流15.9 mA,連接量測儀器頻譜分析儀時所測得之輸出功率為3.3 dBm。
    適用於器官晶片加熱系統之功率放大器操作於2.4 GHz,架構採用一級疊接差動放大器,目標為使負載電感上有最大輸出交流電壓大於8 V以推動電場,利用電場對待測物進行加熱,且平均功率效率大於25%。
    適用雷達與第五代行動通訊功率放大器操作頻率為31 GHz至33 GHz,架構採用兩級差動之AB型功率放大器,系統設計上功率放大器承接前級雙端輸出電路,其後級為單端輸入電路所以輸出端採用雙端轉單端之變壓器,因量測與佈局需求輸入端使用單端轉雙端之變壓器,模擬輸出功率為8.5 dBm,增益為17.41 dB,平均功率效率為23 %。


    Two types of power amplifiers are designed and implemented with TSMC CMOS 90 nm 1P9M process. An E-type power amplifier is designed for non-invasive glucose monitoring system. An AB-type power amplifier is designed for radio detection and ranging (RADAR) and the fifth generation mobile networks. A Power amplifier for microwave heating system is designed and implemented with TSMC CMOS 0.18 um 1P6M process.
    A 28-30 GHz transmitter (Tx) is designed for non-invasive glucose sensing system. A two-stage Class-E power amplifier (PA) is composed with a drive stage and a cascode stage for better linearity. A buffer with transformer is designed for transforming the differential output of voltage-controlled oscillator (VCO) to single-end. The 1.05×1.34 mm2 transmitter is fabricated in TSMC CMOS 90 nm 1P9M process. The measurement result of the transmitter output power with 50 Ω probe is 10.3 dBm with PAE of 17.7% and power consumption of 84.5 mW from a 2-V supply.
    A 2.4 GHz power amplifier is designed for microwave heating system with differential cascode topology. A voltage swing of 8 V on the load inductance is to drive electric field to heat the DUTs.
    A 31 to 33 GHz two stage differential AB-type power amplifier for RADAR system is designed. Input transformer is designed for measurement. Output transformer is designed as single ended output for next stage. The output power of 8.5 dBm, gain of 17.41 dB and PAE of 23% are designed for the RADAR system.

    摘要 iv Abstract v 誌謝 vi Contents vii List of Figures viii Chapter 1 Introduction 1 1.1 Introduction 1 Chapter 2 A 28-30 GHz Class-E Power Amplifier for Non-invasive Glucose Sensing System 3 2.1 System Structure 3 2.2 Transmitter 4 2.2.1 Class-E Power Amplifier 5 2.2.2 Buffer and Transformer 9 2.3 PCB Design and Electromagnetic Analysis 14 2.4 Measurement Results 16 Chapter 3 2.4 GHz Amplifiers for Microwave Heater 28 3.1 System Structure 28 3.2 Amplifier for High Voltage Swing Version 1 29 3.3 Measurement Results 32 Chapter 4 A 31-33 GHz Class-AB Power Amplifier for RADAR System 34 4.1 Transmitter Diagram 34 4.2 Power Amplifier 35 4.2.1 Class-AB Power Amplifier 35 4.2.2 Transformer 38 Chapter 5 Conclusion 42 5.1 Conclusion 42 Reference 43

    [1] Alexeeva, N. V. & Arnold, M. A. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. Journal of diabetes science and technology 4, 1041–1054 (2010).
    [2] P. H. Siegel, Y. Lee and V. Pikov, "Millimeter-wave noninvasive monitoring of glucose in anesthetized rats," 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, 2014, pp. 1-2.
    [3] N. O. Sokal and A. D. Sokal, “Class E—A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 168–176, Jun. 1975.
    [4] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode Class-E PAs,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1222–1229, May 2006.
    [5] E. Hegazi, H. Sjoland and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec 2001.
    [6] Q. Wu et al., "Frequency Tuning Range Extension in LC-VCOs Using Negative-Capacitance Circuits," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 4, pp. 182-186, April 2013.
    [7] W. Huang, J. Lin, Y. Lin and H. Wang, "A K-Band Power Amplifier with 26-dBm Output Power and 34% PAE with Novel Inductance-based Neutralization in 90-nm CMOS," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018, pp. 228-231.
    [8] B. Park, Daechul Jeong, J. Kim, Y. Cho, Kyunghoon Moon and B. Kim, "Highly linear CMOS power amplifier for mm-wave applications," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-3.
    [9] S. Shakib, H. Park, J. Dunworth, V. Aparin and K. Entesari, "20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 352-353.
    [10] K. Kim, T. Seo, K. Sim and Y. Kwon, "Magnetic Nanoparticle-Assisted Microwave Hyperthermia Using an Active Integrated Heat Applicator," IEEE Trans. Microwave Theory Tech., vol. 64, no. 7, pp. 2184-2197, July 2016.
    [11] Hong-Qi Xiao, ”Monolithic CMOS microwave heaters”, NTUST thesis, 2018
    [12] Tzu-Yu Tseng, Monolithic Microwave Heater with Programmable Thermostat Function. Master paper of Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology ,Taipei
    [13] B. Park et al., "Highly Linear mm-Wave CMOS Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
    [14] W. Huang, J. Lin, Y. Lin and H. Wang, "A K-Band Power Amplifier with 26-dBm Output Power and 34% PAE with Novel Inductance-based Neutralization in 90-nm CMOS," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018, pp. 228-231.
    [15] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, and T.-W. Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 42–44, Jan. 2009.
    [16] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers.
    [17] D. Jeong et al., "Linear CMOS power amplifier at Ka-band with ultra-wide video bandwidth," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 220-223.

    無法下載圖示 全文公開日期 2025/02/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE