簡易檢索 / 詳目顯示

研究生: 劉乃慧
Nai-Hui Liu
論文名稱: 快速成型光固化水溶性材料的開發
The Development of Water- Soluble Materials for Photo-Curing Rapid Prototyping
指導教授: 何明樺
MING-HUA HO
口試委員: 鄭逸琳
Yih-Lin Cheng
陳孟專
Meng-Zhuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 131
中文關鍵詞: 快速成型水溶性材料光固化材料三維列印
外文關鍵詞: rapid prototyping,, photo-curable resin, 3-dimensional printing
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D列印(three dimensional printing)技術透過模型材料與支撐材料完美地配合,能製造出複雜度高的產品,然而,物件完成列印後,支撐材料將去除。目前商業化的光固化支撐材料在去除過程中,容易破壞產品的外觀而留下不期望的痕跡。因此,我們的目標是開發一種理想的新型式犧牲型(novel sacrifice layer)樹脂作為光固化快速成型的支撐材料,此樹脂必須固化速率快、具有一定的機械強度,並且在不損壞產品的情況下容易地移除。
    本實驗使用乙醇酸(glycolic acid, GA) 為寡聚物(oligomer)的中心,再經由合成反應,在每個寡聚物的末端接上光反應性的官能基碳碳雙鍵,並將此寡聚物稱之為GA-GMA,同時藉由與功能性單體混合,調節光固化樹脂的機械性質、流變性和收縮率、降解、水解特性。本實驗的樹脂GA-GMA,在光固化後浸泡於水中30分鐘後,機械性質降低79%,混合聚乙二醇(poly ethylene glycol, PEG)後,機械性質可在浸泡水中10分鐘後下降84%。
    根據ISO10993的生物相容性測試,可得知光固化型樹脂具有良好的生物相容性。因其親水性佳,與天然物質蠶絲蛋白具有高達1:1的最高混合比例,溶液混合後不產生分層或相分離現象,代表本研究所開發的樹脂適於攜帶親水性生物分子及天然物質。


    In rapid prototyping, the supporting materials would be necessary to support complex and delicate structures or to be served as molds. The supporting materials must be solidified as efficiently as the other 3D printing resin, and be removed easily without damaging the products. However, the removal of commercial photo-cured scarified materials without affecting the appearance of printed surface is still difficult nowadays. Thus, we aim to develop an ideal and novel sacrificed resin as the supporting materials for photo-cured rapid prototyping.
    In this experiment, We use glycolic acid as a basic part to form a oligomer in the center of our oligomer. And then we add C=C to be a photo reactive part in the end of oligomer. So that we can get photo-reactive glycolic acid. And we name it as GA-GMA. Then, we blended the novel photo-curable oligomers with functional monomers to adjust the mechanical, rheological, shrinkage and the hydrolysis profile of the photo-curable resin. The results showed that the novel photocurable resin GA-GMA would lose its Young’s modulus by 79% after immersing in warm water for 30 minutes. After mixing with polyethylene glycol (PEG), the mechanical properties would lose 84% after soaking in a water 10 minutes.
    According to the biocompatibility tests from ISO10993, it is known that the photocurable resin shows good biocompatibility. Due to its high hydrophilicity, the photo-resin developed in this research can be mixed with natural substances, silk fibroin, with the highest ratio as 1:1. There is no deposition or phase separation in the blending of photo-resin and silk fibroin. The experimental results support that the resin is suitable for carrying hydrophilic biomolecules and natural substances.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 X 表目錄 XIX 專有名詞縮寫 XX 第一章 緒論 1 第二章 文獻回顧 2 2.1 積層製造介紹 2 2.1.1 積層製造的發展現況與未來趨向 2 2.1.2 積層製造系統的種類 3 2.1.3 積層製造於生醫領域的應用 4 2.2 光固化系統 6 2.2.1 光固化系統製程 6 2.2.2 光固化樹脂主要成分 7 2.2.3 光固化系統反應成型機制 10 2.2.4 影響光固化表現的因素 14 2.3 3D列印支撐材料 16 2.4 可分解型或降解型光固化材料 23 2.5 天然物或生物分子3D列印 25 2.6 聚合物降解的機制 27 第三章 實驗材料與方法 34 3.1 實驗藥品 34 3.2 實驗儀器 36 3.3 實驗材料與流程 38 3.3.1 寡聚物的合成 38 3.3.2 樹脂配方及混合方式 38 3.4 材料鑑定與性質檢測 39 3.4.1 傅立葉轉換紅外線光譜儀(FTIR)分析 39 3.4.2 降解測試 39 3.4.3 黏度測試 42 3.4.4 多功能固體密度測試儀 42 3.4.5 表面接觸角(Contact Angle)分析 42 3.4.6 MiiCraft Plus 3D 列印機 44 3.5 體外細胞測試 44 3.5.1 光固化材料試片製作 44 3.5.2 生物相容性檢測方式與操作 44 3.5.3 細胞來源 47 3.5.4 細胞培養 47 3.5.5 細胞冷凍保存 48 3.5.6 細胞解凍及培養 49 3.5.7 細胞計數 50 第四章 結果與討論 52 4.1 光起始劑濃度選擇 52 4.2 新舊光起始劑的影響 54 4.2.1光源波長分析 54 4.2.2傅立葉轉紅外線光譜儀(FTIR)分析轉化率 56 4.2.3新舊光起劑對機械性質與水解性質影響 60 4.3 材料接觸角測量 69 4.4 材料的黏度性質分析 71 4.4.1溫度對寡聚物GA-GMA的黏度影響 71 4.4.2添加寡聚物或單體對黏度的影響 72 4.5 聚合物降解性質 77 4.5.1攪拌速率對機械性質的影響 77 4.5.2添加不同寡聚物對機械性質的影響 80 4.5.3添加不同稀釋單體對機械性質的影響 82 4.6 蠶絲蛋白性質確認、混摻與列印性評估 87 4.6.1純蠶絲蛋白溶液於室溫下乾燥時間 87 4.6.2不同溫度對純蠶絲蛋白溶液穩定性的影響 89 4.6.3不同蠶絲蛋白濃度對樹脂穩定性的影響 92 4.6.4不同溫度對純蠶絲蛋白黏度的影響 96 4.6.5不同濃度蠶絲蛋白對樹脂黏度的影響 97 4.6.6蠶絲蛋白濃度對機械性質的變化 99 4.6.7 材料收縮率 111 4.6.8材料生物相容性檢測 114 4.7 與傳統支撐材料比較 117 第五章 結論 120 參考文獻 122 附錄 131 附錄A: 轉速與測量黏度範圍對照表 131

    1. Gibson, I., The changing face of additive manufacturing. Journal of Manufacturing Technology Management;2017. 28: 10-17.
    2. Wong, K.V. and A. Hernandez, A review of additive manufacturing. ISRN Mechanical Engineering; 2012. 2012: 1-10.
    3. Lu, B., D. Li, and X. Tian, Development trends in additive manufacturing and 3D printing. Engineering; 2015. 1: 85-89.
    4. Ngo, T.D. ,K. Alireza ,I. Gabriele,K.T.Q Nguyen, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering; 2018. 143: 172-196.
    5. Robert, P. H., J.I. Cushing, J.T. Slostad, T. Moser, G.Kirkos, An architecture for self-fabricating space systems. American Institute of Aeronautics and Astronautics; 2014.113: 1-17.
    6. Wu, P., J. Wang, and X. Wang, A critical review of the use of 3-D printing in the construction industry. Automation in Construction; 2016. 68: 21-31.
    7. Wen, Y.X., S. Haoye, M. Baichuan, S. Peng, C. Xuejian, L. Kaihong, Z. Xuan, 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Science; 2017. 5: 1690-1698.
    8. Cesaretti, G.D., E. D. Kestelier, X. Colla, V. Pambaguian, Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica; 2014. 93: 430-450.
    9. Buren, D.V.,S. kendra, Printable spacecraft flexible electronic platforms. America: National Aeronautics and Space Administration; 2014. 15-21.
    10. Lan, P.T.C., S.Y.,Chou L.L. Chen, D. Gemmill, Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Computer-Aided Design; 1997. 29: 53-62.
    11. Hornbeck, L.J., Digital light processing for high-brightness high-resolution applications. International Journal of Scientific and Research; 1997.3: 27-40.
    12. Grimm, T., Fused deposition modeling: a technology evaluation. Time-Compression Technologies; 2003. 11: 1-6.
    13. Park, J., M.J. Tari, and H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal; 2000. 6: 36-50.
    14. Kruth, J.P.M., P. V. Vaerenbergh, J. Froyen, L. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal; 2005. 11:26-36.
    15. Utela, B.S., D. Anderson, R. Ganter, A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes; 2008. 10: 96-104.
    16. Banks, J., Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. Ieee Pulse; 2013. 4: 22-26.
    17. Gross, B.C.E., J. L. Lockwood, S. Y. Chen, C. Spence, D. M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemical; 2014. 86: 3240-3253.
    18. Mertz, L., Dream it, design it, print it in 3-D: what can 3-D printing do for you? Ieee Pulse; 2013. 4: 15-21.
    19. Khaled, S.A., J.C Burley, M.R. Alexander, C.J. Roberts, Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International Journal of Pharmaceutics; 2014. 461: 105-111.
    20. Ursan, I.D., L. Chiu, and A. Pierce, Three-dimensional drug printing: a structured review. Journal of the American Pharmacists Association; 2013. 53: 136-144.
    21. Ventola, C.L., Medical applications for 3D printing: current and projected uses. Pharmacy and Therapeutics; 2014. 39: 704-711.
    22. 張豐志, 應用高分子手冊. 2003. 1-30.
    23. Crivello, J.V. and E. Reichmanis, Photopolymer materials and processes for advanced technologies. Chemistry of Materials; 2013. 26: 533-548.
    24. Decker, C., UV-radiation curing chemistry. Pigment & Resin Technology; 2001. 30: 278-286.
    25. Decker, C., Kinetic Study and New Applications of UV Radiation Curing. Macromolecular Rapid Communications; 2002. 23: 1067-1093.
    26. Lee, J.Y., J. An, and C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Applied Materials Today; 2017. 7: 120-133.
    27. Asmussen, E., Factors Affecting the Color Stability of Restorative Resins. Acta Odontologica Scandinavica; 1983. 41: 11-18.
    28. Ferracane , J. L., E.H Greener., The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. Biomedical Materials Research; 1986. 20: 121-131.
    29. Tadatomi,N., T. Eiji, and A. Kameyama, Novel thermal curing reactions of epoxy resin and polyurethane oligomers using photo-generated poly-functional amines. Polymer Journal; 1993. 25: 421-425.
    30. Ye, Q., P. Spencer, , Y. Wang, A. Misra, Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. Journal of Biomedical Materials Research Part A; 2007. 80: 342-350.
    31. Pandey, R., Photopolymers in 3D printing applications. Arcada: Mirja Andersson; 2014. 10-14.
    32. Alonso, R.C.B., D.S. Junior, E. J. Carvalho,D. Diogo, Effect of photoinitiator concentration on marginal and internal adaptation of experimental composite blends photocured by modulated methods. European Journal of Dentistry; 2013. 7: 1-8.
    33. Corrales, T., F. Catalina, C.Peinado, N.S. Allen, Free radical macrophotoinitiators: an overview on recent advances. Journal of Photochemistry and Photobiology A: Chemistry; 2003. 159: 103-114.
    34. Takata, T., F. Sanda, T. Ariga, H. Nemoto, T. Endo. Cyclic carbonates, novel expandable monomers on polymerization. Macromol. Rapid Communication.; 1997. 18: 461-469.
    35. Koseki, K.I., H. Sakamaki, and K.M. Jeong, In situ measurement of shrinkage behavior of photopolymers. Journal of Photopolymer Science and Technology; 2013. 26: 567-572.
    36. Kim, W.S., Y.C. Jeong, and J.K. Park, Organic-inorganic hybrid photopolymer with reduced volume shrinkage. Applied Physics Letters; 2005. 87: 1-3.
    37. Allen, N.S., Photoinitiators for UV and visible curing of coatings. Photochemistry and Photobiolog; 1996. 100: 101-107.
    38. Endruweit, A., M. Johnson, and A. Long, Curing of composite components by ultraviolet radiation: A Review. Polymer Composites; 2006. 27: 119-128.
    39. Davidson, R.S., The chemistry of photoinitiators—some recent developments. Journal of Photochemistry and Photobiology A: Chemistry; 1993. 73: 81-96.
    40. Decker, C., Photoinitiated crosslinking polymerisation. Progress in Polymer Science; 1996. 21: 593-650.
    41. Boey, F. ,S. K. Rath, A.K. Ng, M. J. M. Abadie, Cationic UV cure kinetics for multifunctional epoxies. Journal of Applied Polymer Science; 2002. 86: 518-525.
    42. 彭志成, 紫外光可硬化之聚胺酯. 國立台灣大學化學工程研究所碩士論文; 1998. 34-40.
    43. Lissi, E. and A. Zanocco, Photoinitiated polymerization: Effect of the initiator absorbance. Journal of Polymer Sciencience; 1983. 21: 2197-2202.
    44. Scherzer, T. and U. Decker, Kinetic investigations on the UV-induced photopolymerization of a diacrylate by time-resolved FTIR spectroscopy: the influence of photoinitiator concentration, light intensity and temperature. Radiation Physics and Chemistry; 1999. 55: 615-619.
    45. Lecamp, L., B. Youssef, C. Bunel, P. Lebaudy, Eliminating sacrificial support material in additive manufacturing through design. Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity. Polymer; 1997. 38: 6089-6096.
    46. Ogliari, F.A., E. Caroline, C.L. Petzhold, F.F. Demarco, P. Evandro, Onium salt improves the polymerization kinetics in an experimental dental adhesive resin. Journal of Dentistry; 2007. 35: 583-587.
    47. Lin, D., Shi, W.F. Nie, K.M. Zhang, Y. Chuan, Photopolymerization of hyperbranched aliphatic acrylated poly (amide ester). I. Synthesis and properties. Journal of Applied Polymer Science; 2001. 82: 1630-1636.
    48. Ferracanel, J.L., J.C. Mitchem, J.R. Condon, and R. Todd, Wear and marginal breakdown of composites with various degrees of cure. Journal of Dental Research; 1997. 76: 1508-1516.
    49. Pfeifer, C.S., L. Ronald, R Roberto., Photoinitiator content in restorative composites: influence on degree of conversion, reaction kinetics, volumetric shrinkage and polymerization stress. American Journal of Dentistry; 2009. 22: 206-210.
    50. Yoshida, K. and E. Greener, Effect of photoinitiator on degree of conversion of unfilled light-cured resin. Journal of Dentistry; 1994. 22: 296-299.
    51. Keller, L., D. Christian, Z. Khalid, B. S. Meins, Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer; 2004. 45: 7437-7447.
    52. Scherzer, T. and U. Decker, The effect of temperature on the kinetics of diacrylate photopolymerizations studied by real-time FTIR spectroscopy. Polymer; 2000. 41: 7681-7690.
    53. Yu, Q., S. Nauman, J.P. Santerre, S. Zhu, Photopolymerization behavior of di (meth) acrylate oligomers. Journal of Materials Science; 2001. 36: 3599-3605.
    54. Guo, X., J. Zhou, W. Zhang, Z. Du, C. Liu, Y. Liu, Self-supporting structure design in additive manufacturing through explicit topology optimization. Computer Methods in Applied Mechanics and Engineering; 2017. 323: 27-63.
    55. Huang, Z.F., Y. Ma, J.H Wei, A. Pan, J. Li, Research of Fused Deposition Modeling Process Oriented Component Design. Advanced Materials Research; 2015. 1095: 828-832.
    56. Bo, Q., L. Zhang, Y. Shi, G. Liu, Support fast generation algorithm based on discrete-marking in rapid prototyping, in affective computing and intelligent interaction. Springer; 2012, 683-695.
    57. Thrimurthulu, K., P.M. Pandey, and N.V. Reddy, Optimum part deposition orientation in fused deposition modeling. International Journal of Machine Tools and Manufacture; 2004. 44: 585-594.
    58. Alexander, P., S. Allen, and D. Dutta, Part orientation and build cost determination in layered manufacturing. Computer-Aided Design; 1998. 30: 343-356.
    59. Jiang, J., X. Xu, and J. Stringer, Support structures for additive manufacturing. Journal of Manufacturing and Materials Processing; 2018. 2: 64.
    60. Gaynor, A.T. and J.K. Guest, Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design. Structural and Multidisciplinary Optimization; 2016. 54: 1157-1172.
    61. Vanek, J., J.A.G. Galicia, and B. Benes, Clever support: Efficient support structure generation for digital fabrication. Computer Graphics Forum; 2014. 33: 117-125.
    62. Crump, S.S., R.L. Zinnel , Process of support removal for fused deposition modeling. United States Patent; 1996. 1-8.
    63. 黃淼俊,鄭華德,張明,朱禕緯, 清除3D列印蠟型支撐材料的方法. 2016. 1-3.
    64. Duran, C., V. Subbian, M.T. Giovanetti, R.Jeffrey, Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyping Journal; 2015. 21: 528-534.
    65. Bolland, B.J., J.M Kanczler, , P. J. Ginty, S.M, Howdle, The application of human bone marrow stromal cells and poly (dl-lactic acid) as a biological bone graft extender in impaction bone grafting. Biomaterials; 2008. 29: 3221-3227.
    66. Koegler, W.S. and L.G. Griffith, Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials; 2004. 25: 2819-2830.
    67. Pihlajamaki, H., O. Bostman, E. Hirvensalo, P. Tormala, P. Rokkanen, Absorbable pins of self-reinforced poly-L-lactic acid for fixation of fractures and osteotomies. The Journal of Bone and Joint Surgery; 1992. 74: 853-857.
    68. Lou, C.W., C.H Yao, Y.S Chen, T.C. Hsieh, J.H. Lin, W.H.Hsing, Manufacturing and Properties of PLA Absorbable Surgical Suture. Textile Research Journal; 2008. 78: 958-965.
    69. Lin, A.S., T.H. Barrowsb, S.H. Cartmella, R.E. Guldberga , Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials; 2003. 24: 481-489.
    70. Lepoittevin, B., M. Devalckenaerea, N. Pantoustiera, M. Alexandrea, D. Kubiesc,C. Calbergb,R. JeAroAmeb, P. Duboisa , Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer; 2002. 43: 4017-4023.
    71. Niu, Y., G.L. Liu, J. Shen, H. Su, Bioactive and degradable scaffolds of the mesoporous bioglass and poly (l-lactide) composite for bone tissue regeneration. Journal of Materials Chemistry B; 2015. 3: 2962-2970.
    72. Browning, M.B., S. N. Cereceres, P. T. Luong, Determination of the in vivo degradation mechanism of PEGDA hydrogels. Journal of Biomedical Materials Research. Part A; 2014. 102: 4244-4251.
    73. Chen, J.Y., J.V. Hwang, Y.C Lin, Y.K Hsieh , Y.L Cheng and J. Wang, Study of physical and degradation properties of 3D-printed biodegradable, photocurable copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers; 2018. 10: 1263.
    74. Drzewiecki, K.E., J.N., Malavade, A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology; 2017. 5: 185-195.
    75. Smith, C.M., Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering; 2004. 10: 1566-1576.
    76. Dubey, N.K. and W.P. Deng, Polymeric Gels. Catholic:Elsevier; 2018, 505-525.
    77. Hakimi, O., D.P. Knight, F. Vollrath, P. Vadgama, Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B: Engineering; 2007. 38: 324-337.
    78. Kundu, J., P.W. Laura, M. Penny, K. Subhas, Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta biomaterialia; 2012. 8: 1720-1729.
    79. Das, S., P. Falguni, Y.J. Choi, Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta biomaterialia; 2015. 11: 233-246.
    80. Leong, K., B. Brott, and R. Langer, Bioerodible polyanhydrides as drug‐carrier matrices. I: Characterization, degradation, and release characteristics. Journal of Biomedical Materials Research; 1985. 19: 941-955.
    81. Gijpferich, A., Mechanisms of polymer degradation. Biomaterials; 1996. 17: 104-114.
    82. Varma, A.C.A.I.K., Degradable-aliphatic-polyesters. New York:Springer; 2002. 125-135
    83. Park, K.R.K.K., Biodegradable hydrogels in drug delivery. Advanced Drug Delivery; 1993. 59-84.
    84. Gopferich, A, R.Langer, The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. Eresion of Polyanhydrides; 1993. 31: 2445-2458.
    85. Laitinen, O., P. Tormala, R. Taurio, K. Skutnabb, K. Saarelainen, T. Iivonen,S. Vainionpaa, Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo. Biomaterials; 1992.13: 1012-1016.
    86. Vert, S.L.M., Crystalline oligomeric stereocomplex as an intermediate compound in racemic poly( DL-Lactic Acid) degradation. Polymer International; 1994. 33: 37-41.
    87. Thomas, S.T., E. Chiellini, Biodegradability of synthetic polymers used for medical and pharmaceutical applications part 1— principles of hydrolysis mechanisms. Bioactive and Compatible Polymers; 1986. 1: 467-497.
    88. Valentina, I., A.Haroutioun, L. Fabrice, V. Vincent, P.Roberto, Poly(Lactic Acid)-based nanobiocomposites with modulated degradation rates. Materials; 2018. 11: 1-19.
    89. Chu, C., A comparison of the effect of pH on the biodegradation of two synthetic absorbable sutures. Annals of Surgery; 1982. 195: 55-59.
    90. Vert, M., S. Li, and H. Garreau, More about the degradation of LA/GA-derived matrices in aqueous media. Journal of Controlled Release; 1991. 16: 15-26.
    91. Li, S.M., H. Garreau, and M. Vert, Structure-property relationships in the case of the degradation of massive aliphatic poly-( -hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine; 1990. 1: 123-130.
    92. Ron, E., T. Turek, Controlled release of polypeptides from polyanhydrides. Proceedings of the National Academy of Sciences; 1993. 90: 4176-4180.
    93. Lyu, S. and D. Untereker, Degradability of polymers for implantable biomedical devices. International Journal of Molecular Sciences; 2009. 10: 4033-4065.
    94. Calheiros, F.C., R. Roberto, Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites. Dental Materials; 2006. 22: 799-803.
    95. Wang, H., Y. Tian, Z. Chenyu, D. Qiyun, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers and polymers; 2009. 10: 1-5.
    96. Kelley, F.N. and F. Bueche, Viscosity and glass temperature relations for polymer‐diluent systems. Journal of Polymer Science; 1961. 50: 549-556.
    97. Kim, D., D.G. Lee, , J.C. Kim, C.S.Lim, Effect of molecular weight of polyurethane toughening agent on adhesive strength and rheological characteristics of automotive structural adhesives. International Journal of Adhesion and Adhesives; 2017. 74: 21-27.
    98. Lee, K.Y., K.H. Bouhadir, and D.J. Mooney, Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials; 2004. 25: 2461-2466.
    99. Gou, S., Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials; 2019. 212: 39-54.
    100. Xie, F., H. Shao, and X. Hu, Effect of storage time and concentration on structure of regenerated silk fibroin solution. International Journal of Modern Physics B; 2006. 20: 3878-3883.
    101. Hamada, H., T. Arakawa, and K. Shiraki, Effect of additives on protein aggregation. Current Pharmaceutical Biotechnology; 2009. 10: 400-407.
    102. Arakawa, T. and S.N. Timasheff, Mechanism of polyethylene glycol interaction with proteins. Biochemistry; 1985. 24: 6756-6762.
    103. Anson, M. and A. Mirsky, The effect of denaturation on the viscosity of protein systems. The Journal of General Physiology; 1932. 15: 341-350.
    104. Mansour, J.M., Biomechanics of cartilage. India: Lippincott Williams; 2003. 66-79.
    105. Deng, D., Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials; 2009. 30: 6724-6730.
    106. Koh, L.D., Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, H.D. Yu , Y.W. Zhang, Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science; 2015. 46: 86-110.
    107. Qi, Y., H. Wang, R.Y. Zheng, I.S. Kim, , K.Q. Zhang, A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences; 2017. 18: 237-258.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE