簡易檢索 / 詳目顯示

研究生: 周耿毅
Keng-Yi Chou
論文名稱: 碳鋼麻田散體相變化的反應機構修改:由Bain變形改為Bain變形、spinodal相分離與序化反應
The modification of martensitic transformation in steels: from Bain distortion to Bain distortion, spinodal decomposition, and ordering reaction
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
任盛源
SHIEN-UANG JEN
顏鴻威
Hung-Wei Yen
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 碳鋼spinodal相分離序化相變化
外文關鍵詞: carbon steel, spinodal decomposition, ordering reaction
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳鋼可經適當熱處理後,具有高的強度、硬度、彈性與疲勞極限,常用於耐磨耗的工件與切削工具上,如中碳鋼可作為工具鋼,高碳鋼可作為鑽頭、絲攻、鉸刀等。本論文研究於不同含碳量之碳鋼經熱處理後的相變化情形,熱處理方式為加熱至1000℃後,以爐冷、空冷、水淬與淬入液態氮方式冷卻。由磁熱重分析儀(M-TGA)的分析,發現經由不同熱處理的碳鋼,得到相似的熱重溫度變化曲線:皆於475℃有磁重增加的現象。利用同步輻射臨場加熱方式的分析,亦發現於475℃附近有相變化的產生;因此推斷這些經不同熱處理的碳鋼於475℃附近是發生類似的相變化。由穿透式電子顯微鏡分析經過不同熱處理的碳鋼內發生的相變化情形,推論當肥粒體(α)於冷卻過程生成後,肥粒體會先經由spinodal相分離而相轉變成低溫無碳肥粒體(α’)與含碳肥粒體(α”),其反應式表示如下:α → α’ + α”;當冷卻溫度低於475℃以下時,含碳之α”相接續發生序化反應,含碳α”相會經由序化反應而轉變為新析出相(BCT),反應式為α” →新析出相(BCT)。故於冷卻過程中,當肥粒體相形成後的總反應式如下:α → α’ + α” → α’ + BCT。

    關鍵字:碳鋼、spinodal相分離、序化相變化。


    We have studied the phase transformations of carbon steel with different wt.% C. The methodology for the processes of the steel includes heating the steel samples to high temperature, 1000℃, and cooling to room temperature via furnace cooling, air cooling, water quenching and liquid nitrogen quenching. We have discovered similar curves showing significant magnetic weight gain at the vicinity of 475℃ from the M-TGA measurement for the steel with different heat treatment. We have also found specific phase transformation occurring at temperature near 475℃ by applying the synchrotron radiation with in-situ heating. After examination of the phase transformations of the steel after various heat treatment by TEM, we have concluded that ferrite phase has undergone unknown phase has grown by aging in slow cooling and driving force in quench. Then, we have concluded that ferrite phase has undergone unknown phase transformations during cooling. Upon cooling from high temperature, ferrite has undergone the spinodal decomposition and decomposes into two other low temperature ferrite phases. One is carbon-free ferrite (α’), and the other is carbon-contained ferrite (α”). The spinodal decomposition is as follows. α → α’ + α”. The ordering reaction occurs at temperature below 475°C and the α” phase transforms into new precipitate, i.e. α” → new precipitate. The overall reactions occur in the ferrite during cooling are as follow. α → α’ + α” → α’ + BCT

    Keywords: carbon steel, spinodal decomposition, ordering reaction.

    摘 要 IV Abstract V 致 謝 VI 目 錄 VII 表目錄 VIII 圖目錄 IX 第一章 簡 介 1 第二章 文獻回顧 6 2.1擴散型相變化(diffusional transformation) 7 2.2非擴散型相變化(diffusionless transformation) 11 2.3鋼鐵的組成與相變化 15 第三章 實驗方法 33 3.1 碳鋼熱處理 33 3.2 試片製備 34 3.3 儀器分析 39 第四章 結果與討論 51 4.1 磁熱重性質 51 4.2 經緩冷碳鋼內肥粒體晶體結構 53 4.3 經快冷碳鋼內麻田散體新析出相的晶體結構 55 第五章 結 論 91 參考資料 94

    1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys”, 3rd ed., (2008).
    2. 李勝隆,”熱處理金屬材料原理與應用”,全華圖書股份有限公司(2014)。
    3. D.E. Laughlin, Spinodal decomposition in age hardening copper-titanium alloys, Acta Metall., 23, 329 (1975).
    4. W.A. Soffa, D.E. Laughlin, High-strength age hardening copper–titanium alloys: redivivus, Prog. Mat. Sci., 49, 347 (2004).
    5. K. Sato, K. Tagawaand, Y. Inoue, Age hardening of an Fe-30Mn-9Al-0.9 C alloy by spinodal decomposition, Scripta Metall., 22, 899 (1988).
    6. K. Sato, K. Tagawaand, Y. Inoue, Mater. Sci. Eng. A, 111, 45 (1989)
    7. K. Sato, K. Tagawa, Y. Inoue, Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metall. Trans. A, 21, 5 (1990).
    8. Y.G. Kim, Y.S. Park, J.K. Han, Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-CX alloys, Metall. Trans. A, 16, 1689 (1985).
    9. K.H. Han, On the coarsening of the modulated structure during aging of austenitic Fe-Mn-Al-C alloys prepared by the rapid solidification process, Mater. Sci. Eng. A, 197, 223 (1995).
    10. W.K. Choo, J.H. Kim, J.C. Yoon, Microstructural change in austenitic Fe-30.0 wt% Mn-7.8 wt% Al-1.3 wt% C initiated by spinodal decomposition and its influence on mechanical properties, Acta Mater., 45, 4877 (1997).
    11. M.C. Li, H. Chand, P.W. Kao, D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Mater. Chem. Phys., 59, 96 (1999).
    12. C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Phase transitions in an Fe–9Al–30Mn–2.0 C alloy, Scripta Mater., 57, 809 (2007).
    13. W.A. Soffa, D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order→disorder transformations, Acta Metall., 37, 3019 (1989).
    14. R. Oshima, C.M. Wayman, Fine structure in quenched Fe-Al-C steels, Metall. Trans., 3, 2163 (1972).
    15. 羅翊洋,“鐵-13鎵合金之磁彈性與機械性質研究”,國立台灣科技大學,碩士論文 (2014)。
    16. R.E. Reed-Hill, Physical Metallurgy Principle, 3rd ed., (1992).
    17. G.E. Dieter, Mechanical Metallurgy, 132 (1988).
    18. K.H. Hwang, C.M. Wan, J.G. Byrne, Mat. Sci. Eng. A, 132, 161 (1991).
    19. E. Robert, Physical Metallurgy Principles, 3rd ed,. (2002).
    20. A.G. Crocker, J. De Phys. Colloque C4, 43, 209 (1982).
    21. Z. Nishiyama, Martensitic Transformation, Academic Press (1978).
    22. 崔占全、王昆林、吳潤,金屬學與熱處理,北京大學出版社,236 (2010)。
    23. L. Cheng, X.L. Wan, K.M. Wu, Three-dimensional morphology of grain boundary Widmanstätten ferrite in a low carbon low alloy steel, Mater. Char., 61, 192 (2010).
    24. 林郁珊,“以方位影像顯微學分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化”,國立台灣科技大學,碩士論文 (2014)。
    25. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia, Experimental evidence for non-cubic bainitic ferrite, Scripta Metall., 69, 409, (2013).
    26. J.H. Jang, H.K.D.H. Bhadeshia, D.W. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite, Scripta Metall., 68, 195, (2013).
    27. J.Y. Yan, A.V. Ruban, Configurational thermodynamics of C in body-centered cubic/tetragonal Fe: A combined computational study, Comput. Mater. Sci, 147, 293, (2018).
    28. D.N. Shackleton, P.M. Kelly, The crystallography of cementite precipitation in the bainite transformation Cristallographie de la precipitation de cementite dans la transformation bainitique Die kristallographie der zementitausscheidung bei bainit-umwandlungen, Acta Metall., 15, 979 (1967).
    29. K.H. Kuo, C.L. JIA, Crystallography of M23C6 and M6C precipitated in a low alloy steel, Acta Metall., 33 (6), 991 (1985).
    30. J. Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Time–temperature–precipitation diagrams of carbide evolution in low alloy steels, Mater. Sci. Eng., A, 402, 288 (2005).
    31. G. Spanos, H.I. Aaronson, Morphology, crystallography and mechanism of sympathetic nucleation of proeutectoid cementite plates, Scripta Metall., 22, 1537 (1988).
    32. D.H. Huang, G. Thomas, Metallography of bainitic transformation in silicon containing steels, Met. Trans., 8A, 1661, (1977).
    33. Y.A. Bagaryatskii, The probable mechanism of the martensite decomposition, Dokl Akad Nauk SSSR, 73, 1161 (1950).
    34. 周宇正,“1.0碳過共析鋼內spinodal相分離與序化相變化的研究”,國立台灣科技大學,碩士論文 (2018)。
    35. 李孟倫,“0.45碳亞共析鋼內spinodal相分離與序化相變化的研究”,國立台灣科技大學,碩士論文 (2018)。
    36. 近角聰信,(張煦、李學養譯),“磁性物理學”,聯經出版事業公司 (1982)。
    37. W.F. Smith,(李春穎、許煙明、陳忠仁譯),“材料科學與工程”高麗圖書有限公司 (1994)。
    38. 金重勳,磁性技術手冊,中華民國磁性技術協會出版 (2002)。
    39. C.N. Hulme-Smith, I. Lonardelli, A.C.Dippel, H.K.D.H. Bhadeshia, Experimental evidence for non-cubic bainitic ferrite, Scripta Mater. 69 409 (2013)
    40. Y.J. Hu, J. Li, K.A. Darling, W.Y. Wang, B.K. Vanleeuwen, X.L. Liu, L.J. Kecskes, E.C. Dickey, Z.K. Liu, Nano-sized superlattice clusters created by oxygen ordering in mechanically alloyed Fe alloys, Sci Rep., 5, 11772, (2015).

    無法下載圖示 全文公開日期 2024/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE