簡易檢索 / 詳目顯示

研究生: 楊靖國
Jing-Guo Yang
論文名稱: 創新之銷對盤滑動對設置用於金屬玻璃鍍 膜及碳纖維複合材料之磨潤研究
Novel design of pin-on-disc sliding mechanism for tribotesting of thin film metallic glass coating on carbon fiber reinforced composites
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 蔡宏營
Hung-Yin Tsai
鄭正元
Jeng-Ywan Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 銷與盤磨耗試驗力學分析模型統計計量分析金屬玻璃鍍膜碳纖維強化聚酯複合材料摩擦係數、溫度磨耗型式
外文關鍵詞: Pin-on-disc tribotesting, Analytical force model, Thin film metallic glass coating, Carbon fibre reinforced plastic, Sliding temperature
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,為量測金屬玻璃鍍膜與碳纖維複合材料之磨潤行為,研發一創新銷對盤磨耗機構,搭載於數值控制工具機(computer numerical control, CNC)中,進行動力、溫度與電氣信號之同步量測。在四個觀測區間(I–Ⅳ:40 sec)中,透過信號擷取與分析,金屬玻璃鍍膜與碳纖維複合材料在磨耗試驗中之控制參數(金屬玻璃鍍膜0.25–2 μm、下壓力10–30 N與線速度50–100 m/min)與動態摩擦係數、電流值、磨耗溫度之擬合關係將可建立。並使用殘差分析解析交互作用與因子之貢獻度,演算系統之理論測試值及信賴區間,進而分離模型中之離群點(outliers)。當離群點被辨識且修正時,所建立之系統模型預測值與實驗之真實值趨近穩定(R2>85%)。之後,再建立包含金屬玻璃鍍膜所產生自潤滑效應之力學分析模型後,並以全因子實驗值(4×3×3)進行校驗,達到89.02%之分析模型精度。而分離離群點後,模型精度提升至90.23%。當抽離力學分析模型之關聯因子,進行控制參數對動摩擦係數與量測溫度之變異數分析(ANOVA)與顯著性檢定(significance),顯示鍍膜厚度比線速度對摩擦係數更有顯著影響,其因子貢獻度(PCR)各為~43.2%與~25.9%。當鍍膜經歷磨耗與剝落後(interval Ⅳ),摩擦係數與量測溫度之顯著控制參數轉變成線速度,其因子貢獻度(PCR)分別為~52.0%與~71.9%。在掃描式電子顯微鏡之表面觀測下,金屬玻璃鍍膜測試棒表面之磨耗特徵與碳纖維複合材料測試盤之破壞型式已完整建立,並詳盡討論。


    This work presents a novel design of a Pin-on-Disc tribotesting system with retrofit applications in CNC machining centres to exhibit synchronised measurements of forces, temperatures, electrical signals. Based on the recorded measurements of coefficient of friction, electrical current and sliding temperature in a full factorial (4×3×3) experiment, normal load (10–30 N), sliding speed (50–100 m/min) and coated thin film metallic glass (TFMG: 0.25–2 μm) in the sliding pair with carbon fibre reinforced plastic (CFRP), residuals of the observations can be resolved and identified. With statistical analysis in the stochastic condition, parametric outliers interacting with system can be determined, as well as the model values and the associate the confident intervals to be identified. In the conditions of insulating or removing the outliers, the established Pin-on-Disc tribotesting system delivered with an appreciable precision level (R2 >85%) over 36 validation tests. Following the accuracy of the Pin-on-Disc tribotesting system being validated, influences of the operating parameters on the coefficient of friction, electrical current and sliding temperature would be consequently investigated. In the fit analytical models for the contact forces and grinding ratio, tribology effects of the TFMG coating were considered and initiated. When comparing the experimental results against the validated model values, a good agreement of the model accuracy (89.02%) to the experimental results was presented. In the evolution tests, the main effects and variances of the operating parameters on the observations were exanimated and discussed. Moreover, the preferable low coefficient of friction and sliding temperature could be obtained, with the significant factor of the coated thickness in PCR of 43.2% and 25.9% respectively. However, when the coating on the pins were worn and removed in the test interval Ⅳ (30–40 sec), the significant factor to the coefficient of friction and sliding temperature was diverted to sliding speed with PCR of ~52.0% and ~71.9% respectively. In the SEM observations of the microstructures on the worn TFMG coated pins and the CFRP discs, characterisations of the wear patterns and behaviour were reported and detailed with micrographs.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 銷對盤之摩擦行為與磨耗型式 3 2.2 銷對盤之機構運動與測試應用 4 2.3 實驗設計之殘差分析與不確定性評估 6 2.4 金屬玻璃鍍膜之摩擦行為與磨耗型式 8 2.5 碳纖維強化聚酯複合材料之摩擦行為與磨耗型式 10 第三章 系統之設計理論及驗證方法 13 3.1 銷對盤之摩擦與磨耗型式 13 3.2 銷對盤之力學模型分析 14 3.3 機構設計與量測功能 16 3.3.1 創新之機構設計 16 3.3.2 同步的量測功能 17 3.4 實驗模型之適切性 20 3.4.1 同步量測之不確定性 21 第四章 實驗與分析方法 23 4.1 實驗設置 23 4.2 實驗材料 24 4.2.1 實驗鍍膜測試棒 24 4.2.2 碳纖維強化聚酯複合材料測試圓盤 25 4.3 數據之量測與取樣 27 4.3.1 摩擦力 27 4.3.2 溫度量測 28 4.3.3 電氣訊號 29 4.3.4 表面形貌分析方法 31 4.4 實驗設計 32 4.5 統計與檢定 33 第五章 結果與討論 34 5.1 不確定分析與驗證測試 34 5.1.1 摩擦係數之信賴區間 34 5.1.2 量測溫度之信賴區間 36 5.1.3 殘差分布與驗證測試 38 5.2 摩擦係數之評估 42 5.2.1 控制參數對摩擦係數之效應 42 5.2.2 主因子效應與變異數分析 46 5.2.3 金屬玻璃鍍膜與碳化鎢之比較 47 5.3 量測溫度之評估 49 5.3.1 控制參數與量測溫度之關係 49 5.3.2 主因子效應與變異數分析 53 5.3.3 金屬玻璃鍍膜與碳化鎢之比較 54 5.4 表面完整性分析 56 5.4.1. 金屬玻璃鍍膜之表面粗糙度(Sa) 56 5.4.2. 金屬玻璃鍍膜之表面附著形貌 58 5.4.3. 金屬玻璃鍍膜之表面磨耗型態 60 5.4.4. 碳纖維複合材料圓盤之表面顯微組織 61 第六章 結論與未來展望 65 6.1 文獻回顧總結 65 6.2 研究結果總結 65 6.3 未來展望 66 參考文獻 71 附錄一 研究著作與學術榮譽 76 附錄二 CNC加工程式碼 78

    [1] P. Groche, C. Müller, J. Stahlmann, S. Zang, Mechanical conditions in bulk metal forming tribometers—Part one, Tribology International, 62 (2013) 223-231.
    [2] P. Groche, J. Stahlmann, C. Müller, Mechanical conditions in bulk metal forming tribometers—Part two, Tribology International, 66 (2013) 345-351.
    [3] F.P. Bowden, D. Tabor, The friction and lubrication of solids, Oxford university press, 2001.
    [4] P.L. Menezes, M. Nosonovsky, S.P. Ingole, S.V. Kailas, M.R. Lovell, Tribology for scientists and engineers, Springer, 2013.
    [5] C. Edwards, J. Halling, An analysis of the plastic interaction of surface asperities and its relevance to the value of the coefficient of friction, Journal of Mechanical Engineering Science, 10 (1968) 101-110.
    [6] E. Rabinowicz, R. Tanner, Friction and wear of materials, Journal of Applied Mechanics, 33 (1966) 479.
    [7] J. McFarlane, D. Tabor, Relation between friction and adhesion, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202 (1950) 244-253.
    [8] A.W.B. Gwidon W. Stachowiak, Chapter 11 - Abrasive, Erosive and Cavitation Wear, in: G.W. Stachowiak, A.W. Batchelor (Eds.) Engineering Tribology (Fourth Edition), Butterworth-Heinemann, Boston, 2014, pp. 525-576.
    [9] T. Sasada, M. Oike, N. Emori, The effect of abrasive grain size on the transition between abrasive and adhesive wear, Wear, 97 (1984) 291-302.
    [10] G.W. Stachowiak, A.W. Batchelor, Chapter 14 - Fatigue Wear, in: G.W. Stachowiak, A.W. Batchelor (Eds.) Engineering Tribology (Fourth Edition), Butterworth-Heinemann, Boston, 2014, pp. 621-645.
    [11] X. Li, M. Sosa, U. Olofsson, A Pin-on-Disc Study of the Tribology Characteristics of Sintered versus Standard Steel Gear Materials, 2015.
    [12] M. Hoić, M. Hrgetić, J. Deur, Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application, Mechatronics, 40 (2016) 220-232.
    [13] I. Velkavrh, M. Lüchinger, K. Kern, S. Klien, F. Ausserer, J. Voyer, A. Diem, M. Schreiner, W. Tillmann, Using a standard pin-on-disc tribometer to analyse friction in a metal forming process, Tribology International, 114 (2017) 418-428.
    [14] J. Wahlström, D. Gventsadze, L. Olander, E. Kutelia, L. Gventsadze, O. Tsurtsumia, U. Olofsson, A pin-on-disc investigation of novel nanoporous composite-based and conventional brake pad materials focussing on airborne wear particles, Tribology International, 44 (2011) 1838-1843.
    [15] A. Golchin, A. Villain, N. Emami, Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts, Tribology International, 110 (2017) 195-200.
    [16] F.E. Kennedy, Y. Lu, I. Baker, Contact temperatures and their influence on wear during pin-on-disk tribotesting, Tribology International, 82 (2015) 534-542.
    [17] D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering statistics, John Wiley & Sons, 2009.
    [18] R.K. Roy, A Primer on the Taguchi Method, Second Edition, Society of Manufacturing Engineers, 2010.
    [19] R.S. Figliola, D.E. Beasley, Theory and design for mechanical measurements, John Wiley & Sons, 2014.
    [20] R. Novak, T. Polcar, Tribological analysis of thin films by pin-on-disc: Evaluation of friction and wear measurement uncertainty, Tribology International, 74 (2014) 154-163.
    [21] S. Guicciardi, C. Melandri, F. Lucchini, G. de Portu, On data dispersion in pin-on-disk wear tests, Wear, 252 (2002) 1001-1006.
    [22] D.H. Lee, J.E. Evetts, Sliding friction and structural relaxation of metallic glasses, Acta Metallurgica, 32 (1984) 1035-1043.
    [23] X. Lan, H. Wu, Y. Liu, W. Zhang, R. Li, S. Chen, X. Zai, T. Hu, Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings, 2016.
    [24] Z. Parlar, M. Bakkal, A.J. Shih, Sliding tribological characteristics of Zr-based bulk metallic glass, Intermetallics, 16 (2008) 34-41.
    [25] N. Khun, H. Yu, Z. Chong, P. Tian, Y. Tian, S. Tor, E. Liu, Mechanical and tribological properties of Zr-based bulk metallic glass for sports applications, Materials & Design, 92 (2016) 667-673.
    [26] P.J. Tao, Y.Z. Yang, Q. Ru, Effect of rotational sliding velocity on surface friction and wear behavior in Zr-based bulk metallic glass, Journal of Alloys and Compounds, 492 (2010) L36-L39.
    [27] M. Bakkal, E. Serbest, İ. Karipçin, A.T. Kuzu, U. Karagüzel, B. Derin, An experimental study on grinding of Zr-based bulk metallic glass, Advances in Manufacturing, 3 (2015) 282-291.
    [28] H. Zhong, J. Chen, L. Dai, Y. Yue, Z. Zhang, X. Zhang, M. Ma, R. Liu, Tribological behaviors of Zr-based bulk metallic glass versus Zr-based bulk metallic glass under relative heavy loads, Intermetallics, 65 (2015) 88-93.
    [29] K. Holmberg, A. Matthews, H. Ronkainen, Coatings tribology—contact mechanisms and surface design, Tribology international, 31 (1998) 107-120.
    [30] B. Schultrich, H.-J. Scheibe, D. Drescher, H. Ziegele, Deposition of superhard amorphous carbon films by pulsed vacuum arc deposition, Surface and Coatings Technology, 98 (1998) 1097-1101.
    [31] M. Shamsa, W. Liu, A. Balandin, C. Casiraghi, W. Milne, A. Ferrari, Thermal conductivity of diamond-like carbon films, Applied Physics Letters, 89 (2006) 161921.
    [32] J.-H. Chu, H.-W. Chen, Y.-C. Chan, J.-G. Duh, J.-W. Lee, J.S.-C. Jang, Modification of structure and property in Zr-based thin film metallic glass via processing temperature control, Thin Solid Films, 561 (2014) 38-42.
    [33] R. Nowosielski, A. Januszka, R. Babilas, Thermal properties of Fe-based bulk metallic glasses, Journal of Achievements in Materials and Manufacturing Engineering, 55 (2012) 349-354.
    [34] R. Voss, L. Seeholzer, F. Kuster, K. Wegener, Cutting process tribometer experiments for evaluation of friction coefficient close to a CFRP machining operation, Procedia CIRP, 66 (2017) 204-209.
    [35] S. Chowdhury, E. De Barra, M. Laugier, Hardness measurement of CVD diamond coatings on SiC substrates, Surface and Coatings Technology, 193 (2005) 200-205.
    [36] D. Twitchen, C. Pickles, S. Coe, R. Sussmann, C. Hall, Thermal conductivity measurements on CVD diamond, Diamond and related materials, 10 (2001) 731-735.
    [37] J.Y. Sheikh-Ahmad, Machining of polymer composites, Springer, 2009.
    [38] S. Ekşı, K. Genel, Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites, composites, 132 (2017) 879-882.
    [39] D.H. Wang, M. Ramulu, D. Arola, Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate, International Journal of Machine Tools and Manufacture, 35 (1995) 1623-1638.
    [40] V. Madhavan, G. Lipczynski, B. Lane, E. Whitenton, Fiber orientation angle effects in machining of unidirectional CFRP laminated composites, 2014.
    [41] X.M. Wang, L.C. Zhang, An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics, International Journal of Machine Tools and Manufacture, 43 (2003) 1015-1022.
    [42] M. Ramulu, C.W. Wern, J.L. Garbini, Effect of fibre direction on surface roughness measurements of machined graphite/epoxy composite, Composites Manufacturing, 4 (1993) 39-51.
    [43] J. Tang, J. Du, Y. Chen, Modeling and experimental study of grinding forces in surface grinding, J. Mater. Process. Technol., 209 (2009) 2847-2854.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE