簡易檢索 / 詳目顯示

研究生: 顏金福
Jin-Fu Yan
論文名稱: 群組非對稱脈波調變調光式電子安定器
Group Asymmetrical PWM Control for A Dimmable Fluorescent Lamp Ballast
指導教授: 謝冠群
Guan-Chyun Hsieh
口試委員: 陳德玉
Dan Chen
梁從主
Tsorng-Juu Liang
羅有綱
Yu-Kang Lo
潘晴財
Ching-Tsai Pan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 輝紋溫度計效應群組非對稱脈波調變
外文關鍵詞: Group-Asymmetrical PWM, striation, thermostat effect
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一群組非對稱脈波寬調變控制技術來消除螢光燈之輝紋及溫度計效應。群組非對稱脈波寬調變可以使螢光燈管在低亮度時的奇次諧波能量有效分佈在每一個諧波上,因此可以有效的來消除輝紋及溫度計效應。群組非對稱脈波寬調變電子安定器不僅可以操作在零電壓切換並且比傳統電磁式螢光燈之亮度多20%。本文內容也有詳盡的數學推導,分別分析螢光燈在群組非對稱脈波寬調變下的頻譜及對稱時的頻譜。本文利用串聯諧振並聯負載式半橋電子安定器之主電路架構,文中除了說明其動作原理,並探討對稱脈波與群組非對稱脈波下的數學推導,並提出一簡易的設計準則及應用實例。最後利用電腦模擬電路軟體IsSpice驗證所提理論之正確性,實驗結果證明本文所提之方案的確可將螢光燈調光範圍大幅擴展為1%~100%。


    A signal processor for eliminating striation and thermostat effect in a fluorescent lamp by group-asymmetrical pulse-width-modulation (GAPWM) control strategy is explored. The proposed GAPWM can make the odd harmonic energies of the lamp current sharing on all the harmonics in low-level dimmer so as to eliminate striation and thermostat effect. Dimming by signal processing instead of by hardware, makes the control strategy easy to implement. A prototype of 80W GAPWM fluorescent lamp ballast is examined for assessing the theoretical investigation and practicality. The GAPWM ballast can be operated at ZVS and the lighting efficiency can be increased up to 20% compared with the traditional one. Besides, the fluorescent lamps can be dimmed without striation and thermostat effect during a wide range from 1% to 100% of the full luminance.

    中文摘要 ...............................................Ⅰ 英文摘要 .....................................................Ⅱ 目錄 ...................................................Ⅲ 圖表索引 .....................................................Ⅳ 第一章 緒論 ............................................1 1.1 研究背景與動機 .....................................................1 1.2 內容大綱 .....................................................2 第二章 螢光燈發光原理與特性 ............................3 2.1 螢光燈基本構造與電氣特性 ........................3 2.1.1 螢光燈基本構造 ............................3 2.1.2 氣體放電發光過程 ..........................7 2.1.3 螢光燈電壓-電流特性 .......................10 2.2 螢光燈之等效模型 ................................12 第三章 串振式半橋電子安定器 ............................16 3.1 電子安定器之基本架構 ............................16 3.2 串聯諧振電路之原理 ..............................20 3.2.1 串聯諧振串聯負載 ..........................20 3.2.2 串聯諧振並聯負載 ..........................22 3.2.3 串聯諧振串並聯負載 ........................24 3.3 半橋串聯諧振並聯負載式螢光燈電子安定器的特性 ....26 第四章 群組非對稱半橋動作原理與分析 ....................30 4.1 群組非對稱半橋電子安定器之主電路架構 ............30 4.2 群組非對稱半橋電子安定器原理與動作狀態穩態分析 ..30 第五章 群組非對稱脈波調變控制的原理及分析 ..............42 5.1 輝紋現象討論 .....................................................42 5.2 電子安定器之燈管電流單頻特性 ....................43 5.3 群組非對稱脈波寬調變數學推導 ....................45 5.4 群組非對稱脈波產生器之設計 ......................51 第六章 設計考量 ........................................56 6.1 功率晶體的選用 ..................................56 6.2 串聯諧振元件驅動器的設計 ........................56 6.3 群組非對稱脈波產生器之群頻率選用策略 ............59 第七章 設計實例 ........................................65 7.1 80W非對稱脈波電子安定器的規格參數 .................65 7.2 功率晶體之選用 ..................................66 7.3 串聯諧振元件之設計 ..............................66 7.4 群組非對稱脈波產生器之設計 ......................67 第八章 系統模擬與實際量測 ..............................68 8.1 系統模擬 ........................................68 8.2 實際量測 ........................................73 第九章 結論 ............................................77 參考文獻 ...............................................78

    [1] K. H. Jee, E. C. Nho, and G. H. Cho, “High frequency resonant inverter for group dimming control of fluorescent lamp lighting systems,” in Proc. IEEE IECON’89, vol. 1, pp. 149-154, 1989.
    [2] E. Gluskin, “High harmonic currents in fluorescent lamp circuits,” IEEE Trans. Ind App., vol. 26, no. 2, pp. 347-351, 1990.
    [3] M. K. Kazimierczuk and W. Szaraniec, “Electronic ballast for fluorescent lamps,” IEEE Trans. Power Electronics, vol. 8, no. 4, pp. 386-395, 1993.
    [4] M. C. Cosby, Jr. and R. M. Nelms, “A resonant inverter for electronic ballast applications,” IEEE Trans. Ind. Electronics., vol. 41, no. 4, pp. 418-425, 1994.
    [5] T. J. Liang, T. S. Liu, and F. J. Chang, “Design and analysis of dimming electronic ballast,” in Proc. IEEE PEDS’97, pp. 397-402, May. 1997.
    [6] G.C Hsieh, W. H. Liu, C.H. Lin, and H.I Hsieh, “Asymmetrical group-pulse-width-modulated technique for eliminating striation in the dimmable fluorescent lamps”, IEEE IECON’01, vol. 2, pp.1090-1095.
    [7] E. Gluskin, “A contribution to the theory of fluorescent lamp circuits,” in Proc. IEEE ISCAS’88, pp. 1385-1388, 1988.
    [8] E. Gluskin, “Discussion of the voltage/current characteristic of a fluorescent lamp,” IEE Proc. vol. 136, no. 5, pp. 229-232, Sep. 1989.
    [9] Chen Min and Qian Zhaoming, “A fluorescent lamp model based on its physical characteristics” IEEE PEDS. vol. 2, pp. 1132-1136, Nov. 2003.
    [10] T. F. Wu, J. C. Hung, and T. H. Yu, “ A pspice circuit model for low-pressure gaseous discharge lamps operating at high frequency,” IEEE Trans. Ind. Electronics., vol. 44, no. 3, pp. 428-431, June 1997.
    [11] S. Ben-Yaakov, M. Shvartsas, and S. Glozman, “Statics and dynamics of fluorescent lamp operating at high frequency: modeling and simulation,” in Proc. IEEE APEC’99, pp. 467-472, Feb. 1999.
    [12] S. B. Yaakov, “Modeling the high frequency behavior of a fluorescent lamp: a comment on “a pspice circuit model for low-pressure gaseous discharge lamps operating at high frequency”,” IEEE Trans. Ind. Electron., vol. 45, no. 6, pp. 947-950, Dec. 1998.
    [13] T. Liu, K. J. Tseng, and D. M. Vilathgamuwa, “A pspice model for electrical characteristics of fluorescent lamps,” in Proc. IEEE APEC’97, pp. 1050-1056, Feb. 1997.
    [14] C. S. Moo, Y. C. Chuang, Y. H. Huang, and H. N. Chen, “Modeling of fluorescent lamps for dimmable electronic ballasts,” IEEE Industry Applications Society IAS Annual Meeting, vol. 4, pp. 2231-2236, Oct. 1996.
    [15] U. Mader and P. Hom, “A dynamic model for the electronically characteristics of fluorescent lamps,” in Proc. IEEE IAS’92, pp. 1928-1934, 1992.
    [16] N. Onishi, T. Shiomi, A. Okude, and T. Yamauchi, “A fluorescent lamp model for high frequency wide range dimming electronic ballast simulation,” in Proc. IEEE APEC’99, pp. 1001-1005, 1999.
    [17] M. Sun and B. L. Hesterman, “ Pspice high-frequency dynamic fluorescent lamp model,” IEEE Trans. on Power Electron., vol. 13, no. 2, pp. 261-271, 1998.
    [18] T. J. Ribarich, and J. J. Ribarich, “A new high-frequency fluorescent lamp model,” IEEE. Ind App., vol. 3, pp. 2094-2098, 1998.
    [19] N. Onishi, T. Shiomi, A. Okude, and T. Yamauchi, “A fluorescent lamp model for high frequency wide range dimming electronic ballast simulation, ” in Proc. IEEE APEC’99, pp. 1001-1005, 1999.
    [20] C. S. Moo, H. C. Yen, Y. C. Hsieh, and C. R. Lee, “A fluorescent lamp model for high-frequency electronic ballasts,” IEEE. Ind App., vol. 5, pp. 3361-3366, 2000.
    [21] P. Zhu and S. Y. R. Hui, “Modeling of a high-frequency operated fluorescent lamp in an electronic ballast environment,” IEE Proc. B, vol. 145, no. 3, pp. 111-116, 1998.
    [22] N. Onishi, T. Shiomi, A. Okude, and T. Yamauchi, “A fluorescent lamp model for high frequency wide range dimming electronic ballast simulation,” in Proc. IEEE APEC’99, pp. 1001-1005, 1999.
    [23] A. Okude, A Ueoka, Y. Kambara and M. Mitani, "Development of and electronic dimming ballast for fluorescent lamps," J. of Illum. Eng. Soc., pp. 15-21, Winter 1992.
    [24] L. Laskai, P. Enjeti and I.J. Pitel, “A unity power factor electronic ballast for metal halide lamps,” in Proc. IEEE APEC’94, vol. 1, pp. 31-37, 1994.
    [25] J. Ribas, J. M. Alonso, E. L. Corominas, A. J. Calleja and M. Rico-Secades, “Design considerations for optimum ignition and dimming of fluorescent lamps using a resonant inverter operating open loop,” in Proc. IEEE IAS’98, vol. 3, pp. 2068-2075, 1998.
    [26] C. Branas, F. J. Azeondo and S. Bracho, “Pulsewidth modulation control of electronic ballast for dimming control of fluorescent lamps,” in Proc. IEEE ISIE’97, pp. 537-542, 1997.
    [27] R. N. Prado, and S. A. Bonaldo, “Designing a dimmable high power factor electronic ballast for fluorescent lamps,” in Proc. IEEE PESC’99, pp. 1115-1120, 1999.
    [28] T. J. Liang, T. S. Liu and F. J. Chang, “Design and analysis of dimming electronic ballast,” in Proc. IEEE PEDS’97, pp. 397-402, 1997.
    [29] C. S. Moo, H. L. Cheng, H. N. Chen and H. C. Yen, “Designing dimmable electronic ballast with frequency control,” in Proc. IEEE APEC’99, pp. 727-733, 1999.
    [30] J. Qian, F. C. Lee and T. Yamauchi, “Analysis, design, and experiments of a high-power-factor electronic ballast,” IEEE Trans. Ind. App., vol. 34, no. 3, pp. 616-624, 1998.
    [31] G. C. Hsieh, C. H. Lin and B. J. Yu, “Harmonized strategy for breaking the acoustic resonance in the fluorescent lamp,” in Proc. IEEE PESC’98, pp. 2041-2046, 1998.
    [32] T. F. Wu and T. H. Yu, “Single-stage electronic ballast with dimming feature and unity power factor,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 586-597, 1998.
    [33] H. L. Cheng, D. Y. Yang, S. H. Huang and C. S. Moo, “A single-stage high-power-factor dimmable electronic ballast with asymmetrical pulse-width-modulation for fluorescent lamps,” in Proc. 2000 The 21st Symp. Electrical Power Eng. vol. 2, pp. 1005-1010, 2000.
    [34] M. Schulz and U. Ingrad, “ Acoustic kink instability in an argon discharge,” The physics of Fluids, vol. 10, no. 5, pp. 1031-1036, 1967.
    [35] F. F. Chen, Introduction to plasma physics, New York: Plenum Press, 1974.
    [36] H. L. Witting, “Acoustic resonance in cylindrical high-pressure arc discharges,” J. of Appl. phys., vol. 49, no. 5, pp. 2680-2683, 1978.
    [37] R. J. Zollweg, “Arc instability in mercury and metal halide arc lamps,” J. of the Illum. Eng. Soc., pp. 90-94 , 1979.
    [38] J. H. Reijnaerts, “Circuit arrangement for reducing striations in a low-pressure mercury discharge lamp,” United States Patent, Patent No.: 5369339, 1994.
    [39] L. Laskai, P. N. Enjeti and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. App., vol. 34, no. 3, pp. 597-605, 1998.
    [40] G. C. Hsieh, and C. H. Lin, “Harmonized strategy for eliminating acoustic resonance in a fluorescent lamp,” United States Patent, Patent No.: 6087785, 2000.

    無法下載圖示 全文公開日期 2006/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE