簡易檢索 / 詳目顯示

研究生: 陳正哲
Cheng-che Chen
論文名稱: 單晶片群組非對稱半橋調光式電子安定器
Single-Chip Group-Asymmetrical Half-Bridge Dimmable Fluorescent Lamp Ballast
指導教授: 謝冠群
Guan-chyun Hsieh
柳宗禹
Tzong-yeu Leou
口試委員: 梁從主
Tsorng-juu Liang
林清一
Chin-e Lin
劉志文
Chih-wen Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 調光電子安定器輝紋
外文關鍵詞: striation, dimmable, ballast
相關次數: 點閱:230下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一訊號處理器來實現一群組非對稱脈波寬調變控制器,並用以消除螢光燈之輝紋及溫度計效應。利用組合語言撰寫的單晶片控制器取代原有類比群組非對稱脈波寬調變控制器,不但使群組非對稱脈波寬調變控制器更容易實現,並可用程式將螢光燈管奇次諧波能量有效分佈在每一個諧波上,藉此消除輝紋及溫度計效應。本論文利用串聯諧振並聯負載式半橋電子安定器之主電路架構,文中除了說明其動作原理,並提出一簡易的設計準則及應用實例。最後利用電腦模擬電路軟體IsSpice驗證所提理論之正確性,實驗結果證明本文所提之方案的確可將螢光燈調光範圍大幅擴展為1%~100%。


    This thesis presents a signal processor for realizing a group-asymmetrical PWM controller (GAPWM), which is used to eliminate striation and thermostat effect in a fluorescent lamp. A single-chip programmable controller with assembly language is proposed instead of the analog GAPWM controller. It can make the control strategy of GAPWM more easy to implement and also can programmably spread the odd harmonic energies of the lamp current sharing onto all spectra of the harmonics so as to precisely eliminate striation and thermostat effect. A series-resonant half-bridge electronic ballast is used to examine the performance of the chip processor . Not only the electronic ballast behavior is analyzed but also a design example with experiment and simulation for verifying the theoretical perdition is conducted. Besides, the fluorescent lamps can be dimmed without striation and thermostat effect during a wide range from 1% to 100% of the full luminance.

    中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 目錄………………………………………………………………………….Ⅲ 圖表索引……………………………………………………………………Ⅵ 第一章. 緒論……………………………………………………….………1 1.1 研究背景與動機..……………………………………………….1 1.2 研究目的………………………………………………………...2 1.3 內容大綱………………………………………………………...2 第二章. 串振式半橋電子安定器………………………………………...3 2.1 電子安定器與傳統安定器的比較……………………………...3 2.2 電子安定器之基本架構………………………………………...5 2.3 串聯諧振電路之原理………………………………………… ..8 2.3.1 串聯諧振串聯負載……………………………………8 2.3.2 串聯諧振並聯負載…………………………………..10 2.3.3 串聯諧振串並聯負載………………………………..12 2.4 串振式半橋電子安定器原理與動作狀態穩態分析………….14 第三章. 非對稱脈波調變控制的分析………………………………….21 3.1 輝紋現象之討論……………………………………………….21 3.2 電子安定器燈管電流單頻特性……………………………….22 3.3 群組非對稱脈波調變數學推導……………………………….25 第四章. 單晶片控制電路之架構………………………………………...28 4.1 群組非對稱與單晶片群組非對稱脈波產生器之比較……….28 4.2 群組非對稱脈波調光控制電路的缺點……………………….30 4.3 單晶片控制電路之架構……………………………………….31 第五章 單晶片控制電路程式設計……………………………………..32 5.1 程式執行流程………………………………………………...32 5.2 程式設計……………………………………………………...33 第六章. 設計考量………………………………………………………...41 6.1 單晶片之設計考量…………………………………………….41 6.2 MOSFET驅動電路之設計考量………………………………42 6.3 功率晶體的運用……………………………………………….43 6.4 串聯諧振元件驅動器的設計………………………………….43 第七章. 設計實例與系統模擬………………………………………….47 7.1 雙管日光燈非對稱脈波電子安定器的規格參數…………….47 7.2 單晶片之選用………………………………………………….48 7.3 MOSFET驅動電路之選用……………………………………48 7.4 功率晶體之選用……………………………………………….49 7.5 串聯諧振元件驅動器的設計………………………………….49 7.6 單晶片之非對稱頻率選用策略……………………………….50 7.7 系統模擬…………………………………………………….....50 第八章. 實際量測……………………………………………………….56 實際量測……………………………………………………………..56 第九章. 結論與未來研究方向建議…………………………………….61 9.1 結論 …………………………………………………………...61 9.2 未來研究方向建議…………………………………………….61 參考文獻……………………………………………………………………63 附錄…………………………………………………………………………66 日光燈程式…………………………………………………………..66

    [1] K. H. Jee, E. C. Nho, and G. H. Cho, “High frequency resonant inverter for group dimming control of fluorescent lamp lighting systems,” in Proc. IEEE IECON’89, vol. 1, pp. 149-154, 1989.
    [2] E. Gluskin, “High harmonic currents in fluorescent lamp circuits,” IEEE Trans. Ind App., vol. 26, no. 2, pp. 347-351, 1990.
    [3] M. K. Kazimierczuk and W. Szaraniec, “Electronic ballast for fluorescent lamps,” IEEE Trans. Power electron, vol. 8, no. 4, pp. 386-395, 1993.
    [4] M. C. Cosby, Jr. and R. M. Nelms, “A resonant inverter for electronic ballast applications,” IEEE Trans. Ind. Electron., vol. 41, no. 4, pp. 418-425, 1994.
    [5] T. J. Liang, T. S. Liu, and F. J. Chang, “Design and analysis of dimming electronic ballast,” in Proc. IEEE PEDS’97, pp. 397-402, May. 1997.
    [6] G. C. Hsieh, W. H. Liu, C.H. Lin, and H.I Hsieh, “Asymmetrical group-pulse-width-modulated technique for eliminating striation in the dimmable fluorescent lamps”, IEEE IECON’01, vol. 2, pp.1090-1095.
    [7] A. Okude, A Ueoka, Y. Kambara and M. Mitani, "Development of and electronic dimming ballast for fluorescent lamps," J. Illum. Eng. Soc., pp. 15-21, Winter 1992.
    [8] L. Laskai, P. Enjeti and I.J. Pitel, “A unity power factor electronic ballast for metal halide lamps,” in Proc. IEEE APEC’94, vol. 1, pp. 31-37, 1994.
    [9] C. Branas, F. J. Azeondo and S. Bracho, “Pulsewidth modulation control of electronic ballast for dimming control of fluorescent lamps,” in Proc. IEEE ISIE’97, pp. 537-542, 1997.
    [10] T. J. Liang, T. S. Liu and F. J. Chang, “Design and analysis of dimming electronic ballast,” in Proc. IEEE PEDS’97, pp. 397-402, 1997.
    [11] J. Ribas, J. M. Alonso, E. L. Corominas, A. J. Calleja and M. Rico-Secades, “Design considerations for optimum ignition and dimming of fluorescent lamps using a resonant inverter operating open loop,” in Proc. IEEE IAS’98, vol. 3, pp. 2068-2075, 1998.
    [12] J. Qian, F. C. Lee and T. Yamauchi, “Analysis, design, and experiments of a high-power-factor electronic ballast,” IEEE Trans. Ind. App., vol. 34, no. 3, pp. 616-624, 1998.
    [13] G. C. Hsieh, C. H. Lin and B. J. Yu, “Harmonized strategy for breaking the acoustic resonance in the fluorescent lamp,” in Proc. IEEE PESC’98, pp. 2041-2046, 1998.
    [14] T. F. Wu and T. H. Yu, “Single-stage electronic ballast with dimming feature and unity power factor,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 586-597, 1998.
    [15] R. N. Prado, and S. A. Bonaldo, “Designing a dimmable high power factor electronic ballast for fluorescent lamps,” in Proc. IEEE PESC’99, pp. 1115-1120, 1999.
    [16] C. S. Moo, H. L. Cheng, H. N. Chen and H. C. Yen, “Designing dimmable electronic ballast with frequency control,” in Proc. IEEE APEC’99, pp. 727-733, 1999.
    [17] H. L. Cheng, D. Y. Yang, S. H. Huang and C. S. Moo, “A single-stage high-power-factor dimmable electronic ballast with asymmetrical pulse-width-modulation for fluorescent lamps,” in Proc. 2000 the 21st Symp. Electrical Power Eng. vol. 2, pp. 1005-1010, 2000.
    [18] M. Schulz and U. Ingrad, “ Acoustic kink instability in an argon discharge,” the physics of Fluids, vol. 10, no. 5, pp. 1031-1036, 1967.
    [19] F. F. Chen, Introduction to plasma physics, New York: Plenum Press, 1974.
    [20] H. L. Witting, “Acoustic resonance in cylindrical high-pressure arc discharges,” J. Appl. phys., vol. 49, no. 5, pp. 2680-2683, 1978.
    [21] R. J. Zollweg, “Arc instability in mercury and metal halide arc lamps,” J. Illum. Eng. Soc., pp. 90-94 , 1979.
    [22] J. H. Reijnaerts, “Circuit arrangement for reducing striations in a low-pressure mercury discharge lamp,” United States Patent, Patent No.: 5369339, 1994.
    [23] L. Laskai, P. N. Enjeti and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. App., vol. 34, no. 3, pp. 597-605, 1998.
    [24] G. C. Hsieh, and C. H. Lin, “Harmonized strategy for eliminating acoustic resonance in a fluorescent lamp,” United States Patent, Patent No.: 6087785, 2000.
    [25] G. C. Hsieh, and J. F. Yan, “Group-Asymmetrical PWM Controller for Dimmable Fluorescent Lamp Ballast without Striation and Thermostat Effect,” in Proc. IEEE IECON’05 , pp.6-10 , 2005

    QR CODE