帳號:guest(3.227.0.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者姓名(中文):江秉儒
作者姓名(英文):Ping-Ju Chiang
論文名稱(中文):折疊機構之靜平衡設計
論文名稱(外文):Static Balancing Design for Foldable Linkages
指導教授姓名(中文):陳羽薰
指導教授姓名(英文):Yu-Hsun Chen
口試委員姓名(中文):郭進星
林柏廷
口試委員姓名(英文):Chin-Hsing Kuo
Po-Ting Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學號:m10603109
出版年(民國):108
畢業學年度:107
學期:2
語文別:中文
論文頁數:65
中文關鍵詞:靜平衡機構折疊式重力補償
外文關鍵詞:static balancing mechanismfoldablegravity compensate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究參考過往文獻、專利中所提到折疊式機構,觀察得知組成折疊式機構的元素。根據設計要求,拘束地桿與輸出桿所做動的角度,之後藉由組合折疊式機構元素,提出一組新型折疊式機構設計。將此設計應用於標準桌球桌,利用尺寸限制條件式加以拘束連桿長度,最後使用MATLAB運算後得到桿件尺寸。
接著導入靜力平衡概念。靜力平衡通常可分為配重法、彈簧法等儲能元件,有鑑於本研究為折疊式機構,機構整體體積為設計考量之一,由於配種法的使用需額外掛載配重塊,將會增大機構體積。因此本研究使用的彈簧法,安裝彈簧於連桿之間,便不影響機構整體體積。由於彈簧受到物理特性上的限制,本研究針對理想與近似靜平衡兩種情況討論並分析,理想靜平衡中安裝零自由長度彈簧,利用MATLAB運算得到彈簧之彈性係數;近似靜平衡部分,實際彈簧拉伸量有其限制,考慮此物理特性進行設計。
針對理想與近似靜平衡設計,分別於Creo中繪製3D CAD,再匯入Adams,進行機構做動模擬,並繪出重力位能與彈力位能曲線。同時,也使用MATLAB運算機構的重力位能與彈力位能,最後將Adams與MATLAB運算之結果相互驗證。
This study refers to the foldable mechanism mentioned in the previous literature and patents and observes the elements that make up the folding mechanism. According to the design requirements, the angle between the rod and the output rod is restrained, and then a set of new folding mechanism design is proposed by combining the folding mechanism elements. Apply this design to the standard ping-pong table, using the size limit condition to limit the length of the link, and finally use MATLAB to get the rod size.
Then introduce the concept of static balancing. Static balancing can usually be divided into counterweight method, spring method, and other energy storage components. In view of the fact that this study is a foldable mechanism, the overall volume of the mechanism is one of the design considerations. Due to the use of the counterweight method, the counterweight will increase the size of the mechanism. Therefore, the spring method will be used in this study, the spring is installed between the connecting rods, does not affect the overall size of the mechanism. Because the spring is limited by physical properties, this study discusses and analyzes the ideal and approximate static balancing. The zero-free length spring is used in the ideal static balancing, and the elastic coefficient of the spring is obtained by MATLAB operation; approximate static balancing part, using practical spring, there is a limit to the amount of stretching. The design regards this physical property as consideration.
For the ideal and approximate static balancing, 3D CAD is drawn in Creo, then imported into Adams, and the mechanism simulation is performed. The gravity potential energy and the elastic potential energy curve are drawn. At the same time, using MATLAB to compute the gravity potential energy and elastic potential energy curves. Finally, the results of Adams and MATLAB are mutually verified.
摘要 1
Abstract 2
致謝 4
目錄 5
表目錄 8
圖目錄 9
第一章 緒論 12
1.1. 研究動機與目的 12
1.2. 文獻回顧 14
1.2.1. 折疊機構 14
1.2.2. 靜力平衡 18
1.3. 論文架構 22
第二章 折疊機構尺寸條件 23
第三章 折疊機構設計 26
3.1. 設計詳述 26
3.2. 設計範例 30
3.3. 小結 35
第四章 理想靜平衡設計 36
4.1. 零自由長度彈簧之安裝 36
4.2. 彈性係數公式之運算 37
4.3. 零自由長度彈簧之實現 41
4.4. 數值範例 42
4.4.1. MATLAB分析 42
4.4.2. Adams分析 43
4.5. 小結 49
第五章 近似靜平衡設計 50
5.1. 實際彈簧之安裝 50
5.1.1. 最佳化 51
5.2. 數值範例 52
5.2.1. MATLAB分析 52
5.2.2. Adams分析 54
5.3. Prototype彈簧之分析 55
5.3.1. MATLAB分析 56
5.3.2. Adams分析 57
5.4. 理想靜平衡與近似靜平衡之比較 58
第六章 結論與未來展望 59
6.1. 結論 59
6.2. 未來展望 60
參考文獻 62
[1] Kuo, C.-H., Lai, S.-J., 2015, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” Journal of Mechanisms and Robotics, 8(1), pp. 015001-015001-10.
[2] Hung, Y. C., Kuo, C. H., A Novel One-Dof Gravity Balancer Based on Cardan Gear Mechanism, in Mechanisms and Machine Science. 2017. p. 261-268.
[3] Tseng, T.-Y., Lin, Y.-J., Hsu, W.-C., Lin, L.-F., Kuo, C.-H., 2017, “A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation with Switchable Hip/Knee-Only Exercise,” Journal of Mechanisms and Robotics, 9(4), pp. 041002-041002-9.
[4] Robertson, P. D., Kuo, C. H., Herder, J. L., 2016, “A Compatibility Study of Static Balancing in Reconfigurable Mechanisms,” Proceedings of the ASME Design Engineering Technical Conference, Vol. 5B-2016.
[5] Chu, Y. L., Kuo, C. H., 2017, “A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload,” Journal of Mechanisms and Robotics, 9(2)
[6] Tsai, H. K., Chen, Y. S., Kuo, C. H., Development of a Continuously Statically Balanced Tablet Computer Stand, in Lecture Notes in Electrical Engineering. 2017. p. 609-618.
[7] Kuo, C. H., Nguyen-Vu, L., Chou, L. T., 2018, “Static Balancing of a Reconfigurable Linkage with Switchable Mobility by Using a Single Counterweight,” 2018 International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2018 - Proceedings.
[8] Robertson, P. D., Herder, J. L., Kuo, C. H., 2018, “The Static Balancing of Single-Loop Reconfigurable Mechanisms,” 2018 International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2018 - Proceedings.
[9] Bates, H. S. W., 1974, Window Hinge, United States Patent No. US3,838,537.
[10] Lusk, C. P., Howell, L. L., 2006, “Design Space of Single-Loop Planar Folded Micro Mechanisms with out-of-Plane Motion,” Journal of Mechanical Design, Transactions of the ASME, 128(5), pp. 1092-1100.
[11] Baker, J. E., 2006, “On Generating a Class of Foldable Six-Bar Spatial Linkages,” Journal of Mechanical Design, Transactions of the ASME, 128(2), pp. 374-383.
[12] Zhao, J. S., Chu, F., Feng, Z. J., 2009, “The Mechanism Theory and Application of Deployable Structures Based on Sle,” Mechanism and Machine Theory, 44(2), pp. 324-335.
[13] Zhao, J., Wang, J., Chu, F., Feng, Z., Dai, J. S., 2012, “Mechanism Synthesis of a Foldable Stair,” Journal of Mechanisms and Robotics, 4(1)
[14] Zhao, D. J., Zhao, J. S., Yan, Z. F., 2016, “Planar Deployable Linkage and Its Application in Overconstrained Lift Mechanism,” Journal of Mechanisms and Robotics, 8(2)
[15] Rajashekhar, V. S., Thiruppathi, K., Senthil, R., 2014, “Modelling, Simulation and Control of a Foldable Stair Mechanism with a Linear Actuation Technique,” Procedia Engineering, Vol. 97, pp. 1312-1321.
[16] Chung, J., Yi, B. J., Oh, S., 2009, “A Foldable 3-Dof Parallel Mechanism with Application to a Flat-Panel Tv Mounting Device,” IEEE Transactions on Robotics, 25(5), pp. 1214-1221.
[17] Kang, L., Yi, B. J., 2016, “Design of Two Foldable Mechanisms without Parasitic Motion,” IEEE Robotics and Automation Letters, 1(2), pp. 930-937.
[18] Huang, H., Li, B., Liu, R., Deng, Z., 2010, “Type Synthesis of Deployable/Foldable Articulated Mechanisms,” 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, pp. 991-996.
[19] Deng, Z., Huang, H., Li, B., Liu, R., 2011, “Synthesis of Deployable/Foldable Single Loop Mechanisms with Revolute Joints,” Journal of Mechanisms and Robotics, 3(3)
[20] Yang, Z. W., Lan, C. C., 2015, “An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs,” Mechanism and Machine Theory, 92, pp. 314-329.
[21] Boisclair, J., Richard, P. L., Laliberté, T., Gosselin, C., 2017, “Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays,” IEEE/ASME Transactions on Mechatronics, 22(1), pp. 457-464.
[22] George, C., 1937, Equipoising Mechanism, Patent No. US2090439A.
[23] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2010, “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator,” Journal of Mechanisms and Robotics, 2(3)
[24] Martini, A., Troncossi, M., Carricato, M., Rivola, A., 2015, “Static Balancing of a Parallel Kinematics Machine with Linear-Delta Architecture: Theory, Design and Numerical Investigation,” Mechanism and Machine Theory, 90, pp. 128-141.
[25] Takesue, N., Komoda, Y., Murayama, H., Fujiwara, K., Fujimoto, H., 2016, “Scissor Lift with Real-Time Self-Adjustment Ability Based on Variable Gravity Compensation Mechanism,” Advanced Robotics, 30(15), pp. 1014-1026.
[26] McGraw-Hill, 2011, Mechanisms and Mechanical Devices Sourcebook, 5 ed.
[27] Herder, J. L., 2001, Energy-Free Systems: Theory, Conception, and Design of Statically Balanced Spring Mechanisms, Vol. 73.
全文檔公開日期:2024/08/21 (本校及校內區域網路)
全文檔公開日期:2024/08/21 (校外網際網路)
全文檔公開日期:2024/08/21 (國家圖書館:臺灣博碩士論文系統)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *