簡易檢索 / 詳目顯示

研究生: 孫伯瑾
Po-Chin Sun
論文名稱: 平面傳輸線至波導極化器與基板整合波導功率分配器
Planar Transmission Line to Waveguide Polarizers and Substrate-Integrated Waveguide Power Dividers
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
曾昭雄
Chao-Hsiung Tseng
楊成發
Chang-fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 259
中文關鍵詞: 平面傳輸線波導極化器基板整合波導功率分配器
外文關鍵詞: Planar Transmission Line, Waveguide Polarizer, Substrate-Integrated Waveguide, Power Divider
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了平面電路饋入波導圓極化器與基板整合波導功率分配器。
    在第二章,我們設計了平面電路饋入波導圓極化器,這個設計使用反對稱漸寬型錐形探針饋入,並且結合使用雙脊與雙槽之圓形波導與方形波導,以整合平面電路至波導轉接以及波導圓極化器兩個元件,減少個別製作兩個元件再進行串接的尺寸。我們將圓形波導與方形波導圓極化器,製作在32 mil 的 Rogers® RO4003 基板上,兩者-10 dB 反射係數的頻寬分別為24.6 %與35.1 %,皆能在滿足X-band (8.2 GHz~12.4 GHz)的部分操作頻段,3 dB Axial Ratio 的頻寬分別為12.7 %與30.5 %,909相位移的頻寬分別為14.6 %與9.2 %。
    在第三章,我們設計了基板整合波導功率分配器,並且將電路實現在單層Rogers® RO4003基板上。首先,我們使用50-微帶線T-Junction來達成寬頻的反射係數,接著,我們使用低阻抗微帶線T-Junction來縮小電路面積,另外,我們亦使用Wilkinson功率分配器來改善隔離度,其結果如下所示:
    使用50-微帶線T-junction的基板整合波導功率分配器,-15 dB反射係數的頻寬為37.9 %,能涵蓋大部分S-band (2.60-3.95 GHz)的頻帶。頻帶內最大穿透係數為-3.24 dB,頻帶內最小隔離度為-6.57 dB。使用低阻抗微帶線T-junction的基板整合波導功率分配器,-15 dB反射係數的頻寬為46.5 %,能涵蓋全部S-band (2.60-3.95 GHz)的頻帶,頻帶內最大穿透係數為-3.24 dB,頻帶內最小隔離度為-5.57 dB,並且其面積遠小與使用50-微帶線T-junction的基板整合波導功率分配器。使用Wilkinson功率分配器的基板整合波導功率分配器,-15 dB反射係數的頻寬為34.7 %,能涵蓋大部分S-band (2.60-3.95 GHz)的頻帶,頻帶內最大穿透係數為-3.27 dB,並且,頻帶內最小隔離度改善為-33.69 dB。為了降低成本,我們改用單層FR4基板來實現以上的功率分配器,其電路的響應與以上電路相似,但是穿透係數會變得比較差,因為FR4基板的板材損耗比較大。


    In this thesis, waveguide polarizers fed by the planar transmission line and substrate-integrated waveguide power dividers are proposed. The details of the content are described below.
    In Chapter 2, circular waveguide and rectangular waveguide polarizers fed by the planar transmission line are proposed. Since the antisymmetric tapered probe is used to feed the waveguide polarizers with double ridges and slots directly, the planar transmission line to waveguide transition and the polarizer can be integrated directly, reducing the circuit size. The circular waveguide and rectangular waveguide polarizers are implemented on the Rogers® RO4003 substrate of thickness 32 mil. The fractional bandwidths, in which the reflection coefficient is smaller than -10 dB, of these two polarizers are 24.6% and 35.1%, respectively, covering part of the X-band (8.2-12.4 GHz). The bandwidth of 3 dB Axial Ratio are 12.7% and 30.5%, respectively while the 909 phase shift are 14.6% and 9.2%, respectively.
    In Chapter 3, several substrate-integrated waveguide power dividers implemented on the single layer Rogers® RO4003 substrate are proposed. First of all, the T-junction implemented with the 50-Ω microstrip line is used to achieve a broadband response of the reflection coefficient. Successively, the T-junction implemented with the low impedance microstrip line is used to reduce the circuit size of the power divider. Besides, the Wilkinson power divider is used to improve the isolation between the output ports of the power divider. The results are shown below.
    The substrate-integrated waveguide power divider using the 50- microstrip line T-junction has a -15-dB reflection coefficient bandwidth of 37.9%, covering most bandwidth of the S-band (2.60-3.95 GHz). In this bandwidth, the transmission coefficient is smaller than -3.24 dB and the isolation is larger than -6.57 dB.
    The substrate-integrated waveguide power divider using the low impedance microstrip line T-junction has a -15-dB reflection coefficient bandwidth of 46.5%, covering the whole S-band (2.60-3.95 GHz). In this bandwidth, the transmission coefficient is smaller than -3.24 dB and the isolation is larger than -5.57 dB. In addition, the area occupied is much smaller than that of the substrate-integrated waveguide power divider using the 50- microstrip line T-junction.
    The substrate-integrated waveguide power divider using the Wilkinson power divider has a -15-dB reflection coefficient bandwidth of 34.7%, covering most bandwidth of the S-band (2.60-3.95 GHz). In this bandwidth, the transmission coefficient is smaller than -3.27 dB and the isolation is enhanced to be than -33.69 dB.
    In order to reduce the cost, the single layer FR4 substrate is used to implement the power dividers mentioned above. The performance of the power dividers implemented with the FR4 substrate is similar to the performance of the power dividers implemented with the Rogers® RO4003 substrate except that the transmission coefficient would be deteriorated since the substrate loss of the FR4 substrate is larger than that of the Rogers® RO4003 substrate.

    摘要 i ABSTRACT ii 誌謝 iv 目錄 v 表目錄 ix 圖目錄 xiv 第1章 簡介 1 1.1 研究動機 1 1.2 文獻探討 3 1.2.1 波導圓極化器 3 1.2.2 基板整合波導功率分配器 6 1.3 貢獻 10 1.4 論文架構 12 第2章 使用錐形探針饋入之波導極化器 13 2.1 使用雙脊之波導極化器 14 2.1.1 圓波導極化器架構 14 2.1.1.1 轉接設計與分析 15 2.1.1.2 微帶線至圓波導轉接 19 2.1.1.3 圓極化器之相位設計 21 2.1.1.4 圓極化器之反射係數設計 22 2.1.1.5 圓極化器之Axial Ratio設計 23 2.1.2 方波導極化器架構 29 2.1.2.1 轉接設計與分析 31 2.1.2.2 微帶線至方波導轉接 33 2.1.2.3 圓極化器之相位設計 36 2.1.2.4 圓極化器之反射係數設計 37 2.1.2.5 圓極化器之Axial Ratio設計 38 2.1.3 實作驗證 44 2.2 使用雙脊與雙槽之波導極化器 55 2.2.1 圓波導極化器架構 55 2.2.1.1 轉接設計與分析 56 2.2.1.2 圓極化器之相位設計 58 2.2.1.3 圓極化器之反射係數設計 58 2.2.1.4 圓極化器之Axial Ratio設計 60 2.2.2 方波導極化器架構 65 2.2.2.1 轉接設計與分析 67 2.2.2.2 圓極化器之相位設計 69 2.2.2.3 圓極化器之反射係數設計 70 2.2.2.4 圓極化器之Axial Ratio設計 71 2.2.3 實作驗證 77 2.3 小結 88 第3章 基板整合波導功率分配器 91 3.1 一倍板厚之基板整合波導功率分配器 92 3.1.1 使用50  微帶線之T-junction基板整合波導功率分配器 92 3.1.1.1 T-junction功率分配器 94 3.1.1.2 微帶線至基板整合波導轉接 100 3.1.1.3 背對背結構驗證 108 3.1.2 使用低阻抗微帶線之T-junction基板整合波導功率分配器 118 3.1.2.1 低阻抗微帶線饋入基板整合波導 120 3.1.2.2 使用低阻抗微帶線之T-junction 功率分配器 123 3.1.2.3 實作驗證 127 3.1.3 使用50  微帶線之Wilkinson基板整合波導功率分配器 134 3.1.3.1 Wilkinson功率分配器 136 3.1.3.2 微帶線至基板整合波導轉接 140 3.1.3.3 背對背結構驗證 144 3.2 兩倍板厚之基板整合波導功率分配器 147 3.2.1 使用50  微帶線之T-junction基板整合波導功率分配器 147 3.2.1.1 T-junction功率分配器 149 3.2.1.2 微帶線至基板整合波導轉接 151 3.2.1.3 背對背結構驗證 158 3.2.2 使用低阻抗微帶線之T-junction基板整合波導功率分配器 168 3.2.2.1 低阻抗微帶線饋入基板整合波導 170 3.2.2.2 使用低阻抗微帶線之T-junction 功率分配器 172 3.2.2.3 實作驗證 175 3.2.3 使用50  微帶線之Wilkinson基板整合波導功率分配器 181 3.2.3.1 Wilkinson功率分配器 183 3.2.3.2 基板整合波導轉接 185 3.2.3.3 背對背結構驗證 190 3.3 小結 192 第4章 結論 196 4.1 結論 196 參考文獻 199 附錄 I 201 圓波導中脊跟槽的尺寸其對相位常數與高階模態的影響 201 附錄 II 210 方波導中脊跟槽的尺寸其對相位常數與高階模態的影響 210 附錄 III 218 一倍板厚之基板整合波導功率分配器的板材輻射損耗之影響 218 附錄 IV 223 兩倍版厚之基板整合波導功率分配器的板材與輻射損耗之影響 223 附錄 V 228 基板整合波導功率分配器尺寸與響應比較 228

    [1] J. Chuang, R. Fang, and C. Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," Electronics Letters, vol. 48, no. 6, pp. 332-333, 2012, doi: 10.1049/el.2011.3673.
    [2] S.-W. Wang, C.-H. Chien, C.-L. Wang, and R.-B. Wu, "A Circular Polarizer Designed With a Dielectric Septum Loading," IEEE Trans. Microw. Theory Techn., vol. 52, pp. 1719-1723, Jul. 2004.
    [3] C. A. Leal-Sevillano, J. R. Montejo-Garai, J. M. Rebollar, and J. A. Ruiz-Cruz, "CAD for dual-band polarizers in corrugated rectangular waveguide," in 2011 41st European Microwave Conference, 10-13 Oct. 2011 2011, pp. 822-825, doi: 10.23919/EuMC.2011.6101919.
    [4] G. Virone, R. Tascone, O. A. Peverini, G. Addamo, and R. Orta, "Combined-Phase-Shift Waveguide Polarizer," IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, pp. 509-511, 2008, doi: 10.1109/LMWC.2008.2001005.
    [5] N. Yoneda, R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2446-2452, 2000, doi: 10.1109/22.898996.
    [6] A. Tribak, A. Mediavilla, J. L. Cano, M. Boussouis, and K. Cepero, "Ultra-broadband low axial ratio corrugated quad-ridge polarizer," in 2009 European Microwave Conference (EuMC), 29 Sept.-1 Oct. 2009 2009, pp. 073-076, doi: 10.23919/EUMC.2009.5295927.
    [7] S. Datta, S. Mukherjee, and A. Biswas, "Design of broadband power divider based on Substrate-Integrated Waveguide technology," in 2013 IEEE Applied Electromagnetics Conference (AEMC), 18-20 Dec. 2013 2013, pp. 1-2, doi: 10.1109/AEMC.2013.7045086.
    [8] D. Eom, J. Byun, and H. Lee, "Multi-layer four-way out-of-phase power divider for substrate integrated waveguide applications," in 2009 IEEE MTT-S International Microwave Symposium Digest, 7-12 June 2009 2009, pp. 477-480, doi: 10.1109/MWSYM.2009.5165737.
    [9] B. Liu, H. Wei, T. Lin, Z. Hong-Bing, J. Wei, and W. Ke, "Half mode substrate integrated waveguide (HMSIW) multi-way power divider," in 2006 Asia-Pacific Microwave Conference, 12-15 Dec. 2006 2006, pp. 917-920, doi: 10.1109/APMC.2006.4429562.
    [10] K. W. Eccleston, "Folded substrate-integrated waveguide out-of-phase power divider," in 2010 Asia-Pacific Microwave Conference, 7-10 Dec. 2010 2010, pp. 1260-1263.
    [11] T. Djerafi, D. Hammou, S. Tatu, and K. Wu, "Bi-layered substrate integrated waveguide Wilkinson power divider/combiner," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2-7 June 2013 2013, pp. 1-3, doi: 10.1109/MWSYM.2013.6697556.
    [12] J. Chuang, R. Fang, and C. Wang, "Compact and Broadband Rectangular Waveguide Power Divider/Combiner Using Microstrip-Fed Antisymmetric Tapered Probe," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 1, pp. 109-116, 2014, doi: 10.1109/TCPMT.2013.2264318.
    [13] W. L.Stutzman and G. A. Thiele, Antenna Theory and Design, 2 ed. United States of America: Wiley, 1998.
    [14] D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009.

    無法下載圖示 全文公開日期 2024/08/23 (校內網路)
    全文公開日期 2024/08/23 (校外網路)
    全文公開日期 2024/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE