簡易檢索 / 詳目顯示

研究生: 陳宏騰
Hong-Teng Chen
論文名稱: 一維與二維熱響應聚(N-異丙基丙烯酰胺)-氧化石墨烯框架薄膜應用於調控分子分離
Mechanism of One-dimensional and Two-dimensional Coordinated Thermal Response PNIPAm/Graphene Oxide Framework Membrane for Control Molecular Separation
指導教授: 賴君義
Juin-Yih Lai
口試委員: 洪維松
Wei-Song Hong
胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 熱響應複合薄膜氧化石墨烯熱響應性高分子滲透蒸發分離程序一維與二維響應
外文關鍵詞: Thermal response composite membrane, Graphene oxide, Temperature responsive polymer, Pervaporation, 1D and 2D response
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統薄膜不可改變的孔徑性質限制了薄膜的應用性,主動響應的分離薄膜對於未來的應用將產生革命性的變革,故本研究的目的是製備可變換孔徑開關的熱響應複合薄膜,並探討各薄膜的響應類型與狀況,合成三種含有特定官能基的熱響應性高分子poly(NIPAm-r-AAc)、poly(NIPAm-r-AAm)、poly(NIPAm-r-MArg)並與氧化石墨烯反應,接著利用壓力輔助裝置沈積於聚醯胺基材膜上,以製備成氧化石墨烯框架熱響應複合薄膜。探討一維高分子鏈與二維氧化石墨烯片材的響應機制對於異丙醇脫水分離效能的影響。
    研究中利用雷射奈米粒徑電位分析儀、紫外光-可見光/近紅外光分析儀來分析官能化後的熱響應材料於水溶液中的變化。高倍率數位顯微鏡、掃描式電子顯微鏡、微米水接觸角、拉曼光譜儀,進行薄膜表面型態與物理結構分析。全反射傅里葉轉換紅外光譜儀、X射線光電子能譜儀進行薄膜的化學特性分析。
    本研究成功的將mPNIPAm接枝於GO奈米片上形成熱響應材料,三種熱響應材料除了呈現良好的溶液分散性外,在受到溫度的刺激後,受接枝效應主導的GO-PNCONH2, GO-PNCOOH呈現一般熱響應材料的分子鏈伸展、收縮特性;而交聯主導的GO-PNCOOH, NH2展現不同以往的一維牽引二維GO片拉扯變形的現象,我們分別將其定義為一維與二維響應,並進一步製成熱響應複合薄膜進行後續的現象探討。
    在滲透蒸發系統(進料異丙醇:水=70:30)的測試下,異丙醇通透量方面, GO熱響應複合薄膜與GO複合薄膜相比,於特定溫度區間下,其通透量會出現明顯的轉折點,其中更以二維響應複合薄膜變化量最為顯著;在異丙醇阻擋率方面,皆能維持在92%以上。各響應薄膜在長時間的循環溫度變化下,從效能結果可以得知其能維持響應性與穩定性。最後分別利用濕態X光繞射儀、可變單一能量慢速正電子束測試儀、濕態整體正電子泯滅儀等儀器,來探討一維與二維材料的熱響應機制,這將有助於未來響應性材料的結構設計與應用。


    The unchangeable pore size of traditional membranes was a limited application of the membrane. Active-responsive separation membranes will revolutionize future applications. Therefore, the purpose of this study is to prepare intelligent response membranes with changeable switches. Besides, discuss the type of response and condition of the membrane. There are three tempera-ture-responsive polymers were prepared, namely poly(NIPAm-r-AAc), poly(NIPAm-r-AAm), poly(NIPAm-r-MArg). It contains specific functional groups. After that it can react with graphene oxide. Moreover, the materials use the pressure-assisted self-assembly technique to deposit on the polyamide substrate and prepare the graphene oxide framework thermal response com-posite membrane. We also explore the response mechanism of a one-dimensional polymer chain and two-dimensional graphene oxide sheet on the effect of isopropanol dehydration separation performance.
    In the study, we used the Zetasizer and UV-Vis/NIR spectrophotometers to analyze the changes of the functionalized temperature-responsive material in aqueous solution. The surface morphology and physical structure of the membrane were characterized by VHX digital microscope, scanning electron microscope, micro water contact angle, micro-raman spectrometer. The chem-ical properties of the membrane were characterized by attenuated total reflec-tance fourier-transform infrared spectroscopy and X-ray photoelectron spec-trometer.
    mPNIPAm was grafted on GO nanosheets to form three thermal response materials. In addition to showing good dispersion in water solution, the GO-PNCONH2 and GO-PNCOOH dominated by the grafting effect. They exhib-ited the molecular chain extension and shrink characteristics of general thermal response materials. GO-PNCOOH, NH2 dominated by crosslinking. It exhibited 1-D dragged distortion phenomenon of 2-D GO nanosheet. We define these phenomena as 1-D and 2-D responses each other. Further fabricated thermal response composite membranes for subsequent phenomenon discussion.
    Under the test of the pervaporation system (Feed solution Isopropanol: water = 70:30). In terms of isopropanol’s flux, compared with the GO com-posite membrane, the flux change of GO thermal response composite mem-branes appear a clear turning point in a specific temperature range. Among them, the 2-D response membrane has the largest amount of change. In terms of isopropanol’s water concentration of permeate, they can maintain more than 92%. Under the long-term temperature cycle test of each response membrane, we will know from the performance results that it can maintain the respon-siveness and stability.
    Finally, a wet state X-ray diffractometer, Variable mono-energy slow pos-itron beam and a wet state Bulk Positron Annihilation Spectroscopy are used to discuss the response mechanism of 1-D and 2-D materials. The results will help the structural design and application of responsive materials in the future.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 薄膜分離技術 2 1.3 智能響應薄膜 4 1.3.1 概述與未來發展 4 1.3.2 響應種類 6 1.3.3 平板薄膜設計: 7 1.4 奈米複合材料 12 1.5 二維材料 14 1.5.1 介紹 14 1.5.2 石墨烯衍生物 14 1.6 熱響應高分子 16 1.7 滲透蒸發程序 18 1.7.1 滲透蒸發發展史 18 1.7.2 滲透蒸發的分離機制 19 1.8 文獻回顧 20 1.9 研究動機與目的 25 第二章 實驗材料與方法 27 2.1 實驗藥品 27 2.2 實驗器材與儀器 29 2.3 實驗步驟 31 2.3.1 合成熱響應高分子 31 2.3.2 製備氧化石墨烯 32 2.3.3 溶液配置 32 2.3.4 製備薄膜 35 2.4 材料鑑定與性質檢測 36 2.4.1 核磁共振氫譜 37 2.4.2 雷射奈米粒徑電位分析儀 37 2.4.3 紫外光-可見光/近紅外光分析儀 38 2.4.4 高倍率數位顯微鏡 39 2.4.5 掃描式電子顯微鏡 40 2.4.6 微米水接觸角 40 2.4.7 顯微拉曼光譜儀 41 2.4.8 衰減全反射傅里葉轉換紅外光譜儀 41 2.4.9 X射線光電子能譜儀 42 2.4.10 X光繞射儀 43 2.4.11滲透蒸發裝置 44 2.4.12 正電子湮滅譜儀 45 第三章 結果與討論 47 3.1 mPNIPAm之鑑定: 47 3.2 GO與GO-mPNIPAm熱響應材料於溶液狀態下之鑑定與分析 49 3.2.1溶液巨觀分析 49 3.2.2溶液粒徑變化分析 52 3.2.3溶液響應溫度變化 53 3.3 GO與GO-mPNIPAm熱響應複合薄膜分析與鑑定 55 3.3.1 薄膜表面型態分析 55 3.3.2 薄膜表面粗糙度分析 57 3.3.3 薄膜表面親疏水性分析 59 3.3.4 薄膜物理結構分析 60 3.3.5 薄膜化學組成分析 61 3.3.6 薄膜乾濕態層間距變化 66 3.4 GO與GO-mPNIPAm熱響應複合薄膜效能檢測 69 3.4.1 純水通量檢測 69 3.4.2 針對不同溫度下進行滲透蒸發之效能檢測 70 3.4.3 長時間響應開關的效能測試 73 3.5 一維與二維熱響應複合薄膜之機制分析 75 3.5.1 自由體積分析 75 3.5.2 機制分析 78 第四章 結論 79 參考文獻 80

    [1] M. Mulder, Basic principles of membrane technology, Springer Science & Business Media, 2012.
    [2] M.N.T. Okano, F.M. Winnik, Poly (N-isopropylacrylamide)-based smart surfaces for cell sheet tissue engineering, Material Matters, 5 (2010) 56.
    [3] J. Liu, L.J. Yu, G. Yue, N. Wang, Z. Cui, L. Hou, J. Li, Q. Li, A. Karton, Q. Cheng, Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control, Advanced Functional Materials, 29 (2019) 1808501.
    [4] H. Liu, S. Yang, Y. Liu, M. Miao, Y. Zhao, A. Sotto, C. Gao, J. Shen, Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning, Journal of Membrane Science, 579 (2019) 230-239.
    [5] H. Liu, J. Liao, Y. Zhao, A. Sotto, J. Zhu, B. van der Bruggen, C. Gao, J. Shen, Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating, Journal of Membrane Science, 564 (2018) 53-61.
    [6] Y. Li, Y. Mao, C. Xiao, X. Xu, X. Li, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, 10 (2020) 21-28.
    [7] X. Li, Q. Zhang, W. Zhang, R. Qu, Y. Wei, L. Feng, Smart Nylon Membranes with pH‐Responsive Wettability: High‐Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant‐Stabilized Emulsions, Advanced Materials Interfaces, 5 (2018) 1801179.
    [8] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS applied materials & interfaces, 10 (2018) 30732-30740.
    [9] E. Chen, B.-M. Chen, Y.-C. Su, Y.-C. Chang, T.-L. Cheng, Y. Barenholz, S.R. Roffler, Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex, ACS nano, (2020).
    [10] A.-I. Bunea, S. Harloff-Helleberg, R. Taboryski, H.M. Nielsen, Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques, Advances in Colloid and Interface Science, (2020) 102177.
    [11] Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Stimuli-responsive smart gating membranes, Chem Soc Rev, 45 (2016) 460-475.
    [12] L.G. Cuello, J.G. Romero, D.M. Cortes, E. Perozo, pH-dependent gating in the Streptomyces lividans K+ channel, Biochemistry, 37 (1998) 3229-3236.
    [13] L.-Y. Chu, R. Xie, T. Schäfer, S.R. Wickramasinghe, Z. Liu, J. Yuan, J.D. Batteas, W. Wang, T. Yamaguchi, X.-J. Ju, Smart Membranes, Royal Society of Chemistry, 2019.
    [14] Z.Q. Cao, G.J. Wang, Multi‐Stimuli‐Responsive Polymer Materials: Particles, Films, and Bulk Gels, The Chemical Record, 16 (2016) 1398-1435.
    [15] D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes, Journal of Membrane Science, 357 (2010) 6-35.
    [16] M. Mocan, H. Wahdat, H.M. van der Kooij, W.M. de Vos, M. Kamperman, Systematic variation of membrane casting parameters to control the structure of thermo-responsive isoporous membranes, Journal of membrane science, 548 (2018) 502-509.
    [17] A.R. Kim, S.L. Lee, S.N. Park, Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin, International journal of biological macromolecules, 118 (2018) 731-740.
    [18] J. Han, K. Wang, D. Yang, J. Nie, Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery, International Journal of Biological Macromolecules, 44 (2009) 229-235.
    [19] M. Kim, S.K. Schmitt, J.W. Choi, J.D. Krutty, P. Gopalan, From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes, Polymers, 7 (2015) 1346-1378.
    [20] R. Roy, S. Komarneni, D. Roy, Multi-phasic ceramic composites made by sol-gel technique, MRS Online Proceedings Library Archive, 32 (1984).
    [21] F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to clay–polymer nanocomposites (CPN), in: Developments in Clay Science, Elsevier, 2013, pp. 655-677.
    [22] S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115-15131.
    [23] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669.
    [24] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials, 10 (2011) 569-581.
    [25] Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport, Advanced Functional Materials, 29 (2019) 1902014.
    [26] B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, (1859) 249-259.
    [27] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) 1339-1339.
    [28] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814.
    [29] S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter, Desalination, 371 (2015) 78-87.
    [30] M. Heskins, J.E. Guillet, Solution properties of poly (N-isopropylacrylamide), Journal of Macromolecular Science—Chemistry, 2 (1968) 1441-1455.
    [31] Y.-J. Kim, Y.T. Matsunaga, Thermo-responsive polymers and their application as smart biomaterials, Journal of Materials Chemistry B, 5 (2017) 4307-4321.
    [32] 賴君義主編, 薄膜科技概論 Introduction to membrane science and technology, 五南, 臺北市, 2019.
    [33] H.-T.L. Crystal, Wijmans et al.(1995)“The Solution-Diffusion Model: A Review.”, J. Memb. Sci, 107 (1995) 1-21.
    [34] A. Higuchi, M. Tamai, Y.-A. Ko, Y.-I. Tagawa, Y.-H. Wu, B.D. Freeman, J.-T. Bing, Y. Chang, Q.-D. Ling, Polymeric membranes for chiral separation of pharmaceuticals and chemicals, Polymer Reviews, 50 (2010) 113-143.
    [35] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science, 332 (2011) 674-676.
    [36] M. Tao, L. Xue, F. Liu, L. Jiang, An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation, Advanced Materials, 26 (2014) 2943-2948.
    [37] B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.D. Freeman, A bioinspired fouling-resistant surface modification for water purification membranes, Journal of membrane science, 413 (2012) 82-90.
    [38] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition, 54 (2015) 3368-3386.
    [39] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chemical Society Reviews, 45 (2016) 5888-5924.
    [40] G.M. Geise, H.S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, Journal of Polymer Science Part B: Polymer Physics, 48 (2010) 1685-1718.
    [41] A. Matin, Z. Khan, S. Zaidi, M. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1-16.
    [42] K.L. Tu, L.D. Nghiem, A.R. Chivas, Boron removal by reverse osmosis membranes in seawater desalination applications, Separation and Purification Technology, 75 (2010) 87-101.
    [43] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environmental science & technology, 47 (2013) 3715-3723.
    [44] H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Applied Catalysis B: Environmental, 194 (2016) 134-140.
    [45] Z. Xu, T. Wu, J. Shi, W. Wang, K. Teng, X. Qian, M. Shan, H. Deng, X. Tian, C. Li, Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes, ACS applied materials & interfaces, 8 (2016) 18418-18429.
    [46] Y.T. Nam, J. Choi, K.M. Kang, D.W. Kim, H.-T. Jung, Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding, ACS Applied Materials & Interfaces, 8 (2016) 27376-27382.
    [47] H.-R. Chae, J. Lee, C.-H. Lee, I.-C. Kim, P.-K. Park, Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, Journal of Membrane Science, 483 (2015) 128-135.
    [48] R. Castro-Muñoz, J. Buera-González, O. de la Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly (vinyl alcohol)/graphene oxide membranes, Journal of Membrane Science, 582 (2019) 423-434.
    [49] M.I. Gibson, R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles, Chemical society reviews, 42 (2013) 7204-7213.
    [50] D. Roy, W.L. Brooks, B.S. Sumerlin, New directions in thermoresponsive polymers, Chemical Society Reviews, 42 (2013) 7214-7243.
    [51] S. Strandman, X. Zhu, Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions, Progress in Polymer Science, 42 (2015) 154-176.
    [52] G. Vancoillie, D. Frank, R. Hoogenboom, Thermoresponsive poly (oligo ethylene glycol acrylates), Progress in Polymer Science, 39 (2014) 1074-1095.
    [53] W. Zhang, T. Aida, Thermally responsive pulsating nanotubules, Science, 337 (2012) 1462-1463.
    [54] S. Nowag, R. Haag, pH‐responsive micro‐and nanocarrier systems, Angewandte Chemie International Edition, 53 (2014) 49-51.
    [55] K. Zhou, H. Liu, S. Zhang, X. Huang, Y. Wang, G. Huang, B.D. Sumer, J. Gao, Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli, Journal of the American Chemical Society, 134 (2012) 7803-7811.
    [56] J.P. Magnusson, A. Khan, G. Pasparakis, A.O. Saeed, W. Wang, C. Alexander, Ion-sensitive “isothermal” responsive polymers prepared in water, Journal of the American Chemical Society, 130 (2008) 10852-10853.
    [57] T. Nakamura, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, A metal–ion-responsive adhesive material via switching of molecular recognition properties, Nature communications, 5 (2014) 4622.
    [58] Q. Dai, A. Nelson, Magnetically-responsive self assembled composites, Chemical Society Reviews, 39 (2010) 4057-4066.
    [59] M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nature materials, 8 (2009) 935-939.
    [60] D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma, H. Tian, Photoresponsive host–guest functional systems, Chemical reviews, 115 (2015) 7543-7588.
    [61] N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, Journal of the American Chemical Society, 132 (2010) 442-443.
    [62] N.S. Ieong, M. Redhead, C. Bosquillon, C. Alexander, M. Kelland, R.K. O’Reilly, The missing lactam-thermoresponsive and biocompatible poly (N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization, Macromolecules, 44 (2011) 886-893.
    [63] A. Adamus, J. Komasa, S. Kadłubowski, P. Ulański, J. Rosiak, M. Kawecki, A. Klama-Baryła, A. Dworak, B. Trzebicka, R. Szweda, Thermoresponsive poly [tri (ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation, Colloids and Surfaces B: Biointerfaces, 145 (2016) 185-193.
    [64] H. Zou, W. Yuan, Temperature-and redox-responsive magnetic complex micelles for controlled drug release, Journal of Materials Chemistry B, 3 (2015) 260-269.
    [65] R. Wei, F. Yang, R. Gu, Q. Liu, J. Zhou, X. Zhang, W. Zhao, C. Zhao, Design of robust thermal and anion dual-responsive membranes with switchable response temperature, ACS applied materials & interfaces, 10 (2018) 36443-36455.
    [66] R.L.G. Lecaros, Z.-C. Syu, Y.-H. Chiao, S.R. Wickramasinghe, Y.-L. Ji, Q.-F. An, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Characterization of a thermoresponsive chitosan derivative as a potential draw solute for forward osmosis, Environmental science & technology, 50 (2016) 11935-11942.
    [67] Q. Zhang, C. Weber, U.S. Schubert, R. Hoogenboom, Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions, Materials Horizons, 4 (2017) 109-116.
    [68] R. Victor, P. Woisel, R. Hoogenboom, Supramolecular control over thermoresponsive polymers, Materials Today, 19 (2016) 44-55.
    [69] H. Zhang, Q. Zhang, L. Zhang, T. Pei, E. Li, H. Wang, Q. Zhang, L. Xia, Temperature‐Responsive Electrocatalysis Based on Poly (N‐Isopropylacrylamide)‐Modified Graphene Oxide (PNIPAm‐GO), Chemistry–A European Journal, 25 (2019) 1535-1542.
    [70] A. Kundu, S. Nandi, P. Das, A.K. Nandi, Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs, ACS Applied Materials & Interfaces, 7 (2015) 3512-3523.
    [71] G. Yao, S. Li, J. Xu, H. Liu, Dual-responsive graphene oxide/poly (NIPAM-co-AA) hydrogel as an adsorbent for rhodamine B and imidacloprid, Journal of Chemical & Engineering Data, 64 (2019) 4054-4065.
    [72] H. Liu, J. Zhu, L. Hao, Y. Jiang, B. van der Bruggen, A. Sotto, C. Gao, J. Shen, Thermo-and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules, Journal of Membrane Science, 587 (2019) 117163.
    [73] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecules, 13 (2012) 3418-3426.
    [74] B. Luan, B.W. Muir, J. Zhu, X. Hao, A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly (NIPAM-co-HPMA), RSC advances, 6 (2016) 89925-89933.
    [75] G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 43 (2005) 641-649.
    [76] U.Q. Ly, M.P. Pham, M.J. Marks, T.N. Truong, Density functional theory study of mechanism of epoxy‐carboxylic acid curing reaction, Journal of Computational Chemistry, 38 (2017) 1093-1102.
    [77] L. Shao, X. Chang, Y. Zhang, Y. Huang, Y. Yao, Z. Guo, Graphene oxide cross-linked chitosan nanocomposite membrane, Applied Surface Science, 280 (2013) 989-992.
    [78] A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane, Desalination, 286 (2012) 99-107.
    [79] H. Chen, W.-S. Hung, C.-H. Lo, S.-H. Huang, M.-L. Cheng, G. Liu, K.-R. Lee, J.-Y. Lai, Y.-M. Sun, C.-C. Hu, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557.
    [80] H. Wang, Y.H. Hu, Electrolyte-induced precipitation of graphene oxide in its aqueous solution, Journal of colloid and interface science, 391 (2013) 21-27.
    [81] L. Zhu, R. Liu, Z. Fang, P.O. Agboola, N.F. Al-Khalli, I. Shakir, Y. Xu, Efficient Fractionation of Graphene Oxide Based on Reversible Adsorption of Polymer and Size-Dependent Sodium Ion Storage, ACS applied materials & interfaces, 11 (2018) 2218-2224.
    [82] R. Imani, S.H. Emami, S. Faghihi, Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications, Physical Chemistry Chemical Physics, 17 (2015) 6328-6339.
    [83] K. Jain, R. Vedarajan, M. Watanabe, M. Ishikiriyama, N. Matsumi, Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers, Polymer Chemistry, 6 (2015) 6819-6825.
    [84] Q. Fang, X. Zhou, W. Deng, Z. Zheng, Z. Liu, Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation, Scientific reports, 6 (2016) 1-11.
    [85] Y. Wei, Y. Zhang, X. Gao, Y. Yuan, B. Su, C. Gao, Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes, Carbon, 108 (2016) 568-575.
    [86] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide, Journal of Membrane Science, 535 (2017) 208-220.
    [87] X. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Advanced Materials, 18 (2006) 3063-3078.
    [88] K. Cao, Z. Jiang, J. Zhao, C. Zhao, C. Gao, F. Pan, B. Wang, X. Cao, J. Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, Journal of membrane science, 469 (2014) 272-283.
    [89] L. Wang, N. Wang, H. Yang, Q. An, B. Li, S. Ji, Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation, Journal of Membrane Science, 559 (2018) 8-18.
    [90] J. Liu, N. Wang, L.-J. Yu, A. Karton, W. Li, W. Zhang, F. Guo, L. Hou, Q. Cheng, L. Jiang, Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation, Nature communications, 8 (2017) 1-9.
    [91] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47 (2009) 145-152.
    [92] W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chemistry of Materials, 26 (2014) 2983-2990.
    [93] W.-S. Hung, Q.-F. An, M. De Guzman, H.-Y. Lin, S.-H. Huang, W.-R. Liu, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon, 68 (2014) 670-677.
    [94] M.B.M.Y. Ang, M.R. Gallardo, G.V.C. Dizon, M.R. De Guzman, L.L. Tayo, S.-H. Huang, C.-L. Lai, H.-A. Tsai, W.-S. Hung, C.-C. Hu, Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance, Journal of Membrane Science, 587 (2019) 117188.
    [95] W.-S. Hung, Y.-L. Lai, P.-H. Lee, Y.-H. Chiao, A. Sengupta, M. Sivakumar, K.-R. Lee, J.-Y. Lai, Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification, Separation and Purification Technology, 239 (2020) 116499.

    無法下載圖示 全文公開日期 2025/08/13 (校內網路)
    全文公開日期 2025/08/13 (校外網路)
    全文公開日期 2025/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE