簡易檢索 / 詳目顯示

研究生: 鄭博謚
Po-I Cheng
論文名稱: 聚乙烯醇/戊二醛/幾丁聚醣-銀離子薄膜對 異丙醇/水混合液之滲透蒸發分離效能
Pervaporation performance of PVA/GA/CS-Ag+-Membrane for the separation of Isopropanol/water mixture
指導教授: 洪伯達
Po-Da Hong
口試委員: 王大銘
Da-Ming Wang
蔡協致
Hsieh-Chih Tsai
白孟宜
Meng-Yi Bai
蔡燕鈴
Yen-Ling Tsai
李坤穆
kun-Mu Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 聚乙烯醇幾丁聚醣戊二醛銀離子滲透蒸發
外文關鍵詞: Polyvinyl alcohol, Chitosan, Glutaraldehyde, Silver ion, Pervaporation
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用戊二醛 (Glutaraldehyde,GA) 作為交聯劑,添加幾丁聚醣或螯合銀離子 (Ag+) 的幾丁聚醣 (Chitosan,CS) 至聚乙烯醇 (Polyvinylalcohol,PVA) 中,形成PVA/ GA/ CS或PVA/ GA/ CS-Ag+ 薄膜,進行異丙醇/水的分離效能探討。並使用X射線繞射儀 (X-ray diffraction,XRD)、傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy,FTIR)、掃描式電子顯微鏡 (Scanning electron microscopy,SEM)、熱重力分析儀 (Thermogravimetric analysis,TGA) 、接觸角量測儀 (contact angle measurement)、電導度計 (Conductivity meter) 與抗拉強度測試儀 (tensile strength tests) 等儀器,測試對薄膜的結構與性質進行分析。
    論文分為三大部份,第一部份主要是研究如何在不使用基材 (Substrate) 下製備出具有機械強度良好及對水穩定性高的薄膜,除了釐清製程中的參數變化對薄膜的影響外,並使用滲透蒸發測試 (Pervaperation test,PV) 來觀察薄膜對異丙醇和水的分離效能。一般而言,有機溶劑/水混合溶液中有機溶劑的比例越高,其通量越低,為克服這個問題,本論文第二部份以90%的異丙醇水溶液濃度進行滲透蒸發實驗,測試薄膜對此高濃度有機溶液的分離效果。第三部份為以CS對不同濃度的Ag+進行螯合,之後與PVA進行成膜,並調配不同比例的異丙醇/水溶液進行PV測試,探討Ag+的添加量對異丙醇/水溶液的分離效果。
    結果可得知,以GA作為交聯劑,透過將已螯合Ag+ 之CS前驅體與PVA混合,可獲得具有高機械強度的PVA/ GA/ CS-Ag+ 薄膜。此PVA/ GA/ CS-Ag+ 薄膜應用於異丙醇/水溶液的滲透蒸發分離時,由於具高極性的銀離子的導入,可以有效地促進水的透過性,使得水的通量大為增加。由膨潤度、接觸角和導電度的量測可知薄膜的親水性因Ag+ 的添加有明顯的提升。此外銀離子以螯合形式存在於CS與PVA分子鏈間,使得分子間的孔洞較為均勻緻密,因此也不損失其選擇性。銀離子的添加對於高濃度異丙醇/水溶液體系的分離更顯重要性,本研究製得的PVA/ GA/ CS-Ag+ 薄膜,當Ag+含量為1.17×10-1 mol./ L,操作溫度為30℃時,通量可達1.97 kg / m2h,選擇因子可高達89991。以XRD與FTIR分析可得知薄膜中的確有銀離子的存在,且銀離子與CS和PVA間具有交互作用力,此亦為造成薄膜的機械強度大為提升的原因。


    The Glutaraldehyde (GA) was used as a cross-linker in this study. Then the Chitosan (CS) or chitosan chelated with silver ion was added into the Polyvinylalcohol (PVA) to form the PVA/ GA/ CS and PVA/ GA/ CS-Ag+membrane respectively for the study of isopropanol/water mixture’s separation performance. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Contact angle measurement, Conductivity meter and tensile strength tests were utilized for the constructions and properties analysis.
    This thesis is composed of three parts. In the first part, we attempt to prepare the membrane without substrate still possesses good mechanical property and water resistance. The effects of procedure parameters on the properties of membranes were evaluated. After that, the pervaporation separation performance of membranes for isopropanol-water mixture was appraised. In general, the permeation for higher organic solvent/water ratios behave the lower flux in pervaporation test. In order to solve this problem, the 90% isopropanol aqueous solution was adopted to measure the pervaporation separation performance as stated in the second part. In the third part, the various amount silver ions were chelated with CS via adding different concentration of Ag+ solution to CS. Subsequently, this Ag+-chelated CS was used as a precursor to prepare the PVA/ GA/ CS-Ag+ membrane by mixed with PVA. In addition, the various isopropanol/water mixtures were prepared for pervaporation separation effect assessment.
    The results in this study were summarized as follows; the membranes with high mechanical property could obtained by mixing with the precursor of Ag+-chelated CS and PVA. The introduction of Ag+ with high polarity naturally could let water molecular easy to throughout the membranes. This mechanism may give rise to the large increase in permeation flux. This high hydrophilicity of PVA/GA/CS-Ag+ membranes could be determined by the measurements of swelling degree, contact angle and Electrical conductivity. The structure of membrane became uniform is due to the Ag+chelating with CS and PVA polymer chain. Thus, it promotes the membranes pervaporation flux without losing their selectivity. The application particularly showed its importance for the separation of water/isopropanol mixture under lower water percentage in feed. Based on the membrane prepared from the Ag+ concentration of 1.17x10-1 mol., the experimental result demonstrated that the highest flux of 1.97 kg/m2h accompanied with a separation factor up to ca. 9*104 could be achieved by the pervaporation separation of an isopropanol solution with the concentration of 90wt% at a given temperature of 30C. It also indicated clearly that the mixing system existed the chemical interaction or crosslink among Ag+, CS and PVA confirmed by the analyses of XRD and FTIR, resulting in the increase of mechanical property of the membrane.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章前言 1 1.1 薄膜結構之分類(Classification of membranes) 4 1.2 薄膜製備方式(Preparation method of membranes) 4 1.2.1 熱誘導式相轉換法(Thermal induced phase separation, TIPS) 4 1.2.2 乾式相轉換法(Precipitation by solvent evaporation) 5 1.2.3 濕式相轉換法(Wet-phase inversion) 5 1.2.4 乾/濕式混合製程(Dry / Wet process) 5 1.3 成膜理論之介紹(Introcuction of membrane formation) 5 1.3.1 熱力學(Thermodynamics) 6 1.3.2 質傳動力學(Mass transmission dynamics) 8 1.4 薄膜改質(Membrane modification) 9 1.4.1交聯(Crosslinking) 9 1.4.2摻合(Blending) 9 1.4.3接枝(Grafting) 10 1.4.4交互網穿高分子(Interpenetration polymer networks , IPNs) 10 1.5 聚乙烯醇高分子(Polyvinyl alcohol) 10 1.6幾丁質與幾丁聚醣(Chitin&Chitosan) 11 1.6.1幾丁聚醣對重金屬的吸附特性(Adsorption character of chitosan for heavy metal ions) 11 1.6.2 幾丁聚醣與重金屬的螯合作用(Chelating of chitosan & heavy metal ions) 12 1.6.3 幾丁聚醣與重金屬的靜電吸引作用(Static electricity interaction of chitosan & heavy metal ions) 12 1.7 文獻回顧 13 1.8 研究動機與目的 16 第二章實驗流程與反應機制 18 2.1 PVA/GA/CS薄膜製備 (Preparation of PVA/GA/CS membrane) 18 2.2 PVA /GA /CS-Ag +薄膜製備 (Preparation of PVA /GA /CS-Ag + membrane) 19 2.3 薄膜成形反應機制 20 2.3.1 交聯反應機制 20 2.3.2 氫鍵與螯合反應機制 21 第三章實驗流程與儀器設備 23 3.1實驗試藥(Experimental reagent) 23 3.2薄膜的特性量測(Property measurement of membranes) 24 3.2.1 X-ray diffraction (XRD) 24 3.2.2 Fourier transform infrared spectroscopy (FTIR) 24 3.2.3 Thermogravimetric analysis (TGA) 25 3.2.4 Scanning electron microscopy and energy dispersive spectrometer (SEM&EDS) 25 3.2.5 Contact angle analyzer (CAA) 25 3.2.6 Materials Testing System (MTS) 25 3.2.7 Swelling measurement 26 3.2.8 Solubility measurement 26 3.2.9 Electrical conductivity measurement 26 3.2.10 Resistivity measurement 27 3.2.11 Pervaporation experiment 27 第四章結果與討論 29 4.1 X-ray diffraction (XRD) 29 4.2 Fourier transform infrared spectroscopy (FTIR) 31 4.3 Thermogravimetric analysis (TGA) 35 4.4 Scanning electron microscopy&energy dispersive spectrometer (SEM&EDS) 37 4.5 Contact angle analyzer (CAA) 43 4.6 Materials Testing System (MTS) 47 4.7 Swelling & Solubility measurement 49 4.8 Electrical conductivity & Resistivity measurement 52 4.9 Pervaporation experiment 54 第五章結論 63 第六章參考文獻 64

    [1] J. Neel, Introduction to pervaporation, in: R.Y.M. Huang (Ed.), Pervaporation Membrane Separation Processes, Elsevier, Amsterdam, (1991), pp. 1- 86.
    [2] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, J. Membr. Sci. 287 (2007) 162-179.
    [3] J. Lu, Q. Nguyen, L. Zhou, B. Xu, Z. Ping, Study of the role of water in the transport of water and THF, through hydrophilic membranes by pervaporation, J. Membr. Sci. 226 (2003) 135-143.
    [4] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic-organic mixtures by pervaporation – a review, J. Membr. Sci. 241 (2004) 1-21.
    [5] P. Vandeweerdt, H. Berghmans, Temperature-concentration behavior of solution polydisperse, atactic poly ( methyl methacrylate ) and its influence on the formation of amorphous,microporous membranes, Macromolecules, 24 (1991) 3547-3552.
    [6] R.H. Mehta, D.A. Madsen, D.S. Kalika, Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation, J. Membr. Sci., 107 (1995) 93-106.
    [7] L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part I. Study the macrovoid formation, J. Membr. Sci., 84 (1993) 93-106.
    [8] L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, Part II. Kinetic of demixing and macrovoid growth, J. Membr. Sci., 87 (1993) 267-279.
    [9] F.C. Lin, D.M. Wang, J.Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110 (1996) 25-36.
    [10] H. Yanagishita, T. Nakane, H. Yoshitome, Selection criteria for solvent and gelation medium in the phase inversion process, J. Membr. Sci., 89 (1994) 215-221.
    [11] J.Y. Lai, M.J. Liu, K.R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, J. Membr. Sci., 86 (1994) 103-118.
    [12] H. Strathmann, K. Kock, The formation mechanism of phase inversion membrane, Desalination, 21 (1977) 241-255.
    [13] R.M. Boom, T.V. Boomgaard, C.A. Smolders, Mass transfer and thermodynamics during immersion precipitation for two-polymer system:Evaluation with the system PES-PVP-NMP-water, J. Membr. Sci., 90 (1994) 231-249.
    [14] F.W. Altena, C.A. Smolders, Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent, Macromolecules, 15 (1982) 1491-1497.
    [15] J.K. Kim, Y.D. Kim, T. Kanamori, H.K. Lee, K.J. Balk, Vitrification phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci., 71 (1999) 431-438.
    [16] Tokuyasu, K., Ohnishi-Kameyama, M., & Hayashi, K.. Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Bioscience, biotechnology, and biochemistry 60.10 (1996): 1598-1603.
    [17] Knorr, D. Use of chitinous polymers in food: a challenge for food research and development. Food Technology (USA) (1984).
    [18] Hackman, R. H. Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked. Australian Journal of Biological Sciences 13.4 (1960): 568-577.
    [19] Hackman, R. H et al Studies on chitin. VI. The nature of alpha- and beta-chitins. Australian Journal of Biological Sciences 18(4) (1965) :935-46.
    [20] Muzzarelli, R. A., Barontini, G., & Rochetti, R.. Isolation of lysozyme on chitosan. Biotechnology and bioengineering 20.1 (1978): 87-94.
    [21] Muzzarelli, R. A., & Rocchetti, R. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers 5.6 (1985): 461-472.
    [22] Domard, A., and M. Rinaudo. Preparation and characterization of fully deacetylated chitosan. International Journal of Biological Macromolecules 5.1 (1983): 49-52.
    [23] Masri, M. Sid, F. William Reuter, and Mendel Friedman. Binding of metal cations by natural substances. Journal of Applied Polymer Science 18.3 (1974): 675-681.
    [24] Wan Ngah, W. S., and K. H. Liang. Adsorption of gold (III) ions onto chitosan and N-carboxymethyl chitosan: equilibrium studies. Industrial & engineering chemistry research 38.4 (1999): 1411-1414.
    [25] Arrascue, Martha Ly, et al. Gold sorption on chitosan derivatives. Hydrometallurgy 71.1-2 (2003): 191-200.
    [26] Coughlin, R. W., Deshaies, M. R., & Davis, E. M.. Chitosan in crab shell wastes purifies electroplating wastewater. Environmental Progress 9.1 (1990): 35-39.
    [27] Gyliene, O., Rekertas, R., & Šalkauskas, M.. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells. Water Research 36.16 (2002): 4128-4136.
    [28] Ng, J. C. Y., Cheung, W. H., & McKay, G. Equilibrium studies of the sorption of Cu (II) ions onto chitosan. Journal of Colloid and Interface Science 255.1 (2002): 64-74.
    [29] Chu, K. H. Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. Journal of Hazardous Materials 90.1 (2002): 77-95.
    [30] Guibal, E.. Interactions of metal ions with chitosan-based sorbents: a review. Separation and purification technology 38.1 (2004): 43-74.
    [31] Randall, J. M., et al. Removal of trace quantities of nickel from solution. Journal of Applied Polymer Science 23.3 (1979): 727-732.
    [32] Peniche‐Covas, C., Alvarez, L. W., & Argüelles‐Monal, W. The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science 46.7 (1992): 1147-1150.
    [33] Vasconcelos, M. T., Leal, M. F. C., & Soares, H. M.. Influence of the ratio copper (II) to ligand concentrations and the nature of entering and leaving ligands on the lability of copper (II) complexes. Analytica chimica acta 330.2-3 (1996): 273-281.
    [34] Qian, Shahua, et al. Studies of adsorption behavior of crosslinked chitosan for Cr (VI), Se (VI). Journal of Applied Polymer Science 77.14 (2000): 3216-3219.
    [35] Guibal, E., et al. Platinum and palladium sorption on chitosan derivatives. Separation Science and Technology 36.5-6 (2001): 1017-1040.
    [36] Schlick, S. Binding sites of copper2+ in chitin and chitosan. An electron spin resonance study. Macromolecules 19.1 (1986): 192-195.
    [37] Rhazi, M., et al. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer 43.4 (2002): 1267-1276.
    [38] Ogawa, K., & Yui, T. Crystallinity of partially N-acetylated chitosans. Bioscience, biotechnology, and biochemistry 57.9 (1993): 1466-1469.
    [39] Domard, A. pH and cd measurements on a fully deacetylated chitosan: application to CuII—polymer interactions. International journal of biological macromolecules 9.2 (1987): 98-104.
    [40] Chiessi, Ester, et al. Copper complexes immobilized to chitosan. Journal of inorganic biochemistry 46.2 (1992): 109-118.
    [41] Udaybhaskar, P., Iyengar, L., & Rao, A. P.. Hexavalent chromium interaction with chitosan. Journal of Applied Polymer Science 39.3 (1990): 739-747.
    [42] Sajjan, Ashok M., et al. Development of novel grafted hybrid PVA membranes using glycidyltrimethylammonium chloride for pervaporation separation of water–isopropanol mixtures. Journal of Industrial and Engineering Chemistry 19.2 (2013): 427-437.
    [43] Lin, Wenhai, et al. Study of pervaporation for dehydration of caprolactam through PVA/nano silica composite membranes. Desalination 285 (2012): 39-45.
    [44] Amnuaypanich, S., J. Patthana, and P. Phinyocheep. Mixed matrix membranes prepared from natural rubber/poly (vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. Chemical Engineering Science 64.23 (2009): 4908-4918.
    [45] Yuan, Hai-Kuan, et al. Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination 280.1-3 (2011): 252-258.
    [46] Moulik, Siddhartha, et al. Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation. Carbohydrate polymers 193 (2018): 28-38.
    [47] Kononova, Svetlana V., et al. Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan. Carbohydrate polymers 181 (2018): 86-92.
    [48]Huang, R. Y. M., R. Pal, and G. Y. Moon. Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. Journal of Membrane Science 160.1 (1999): 101-113.
    [49] Shen, Jiang-nan, et al. Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. Journal of Membrane Science 462 (2014): 160-169.
    [50] Sunitha, K., Satyanarayana, S. V., & Sridhar, S. Phosphorylated chitosan membranes for the separation of ethanol–water mixtures by pervaporation. Carbohydrate polymers 87.2 (2012): 1569-1574.
    [51] Lin, W., Li, Q., & Zhu, T. New chitosan/Konjac glucomannan blending membrane for application in pervaporation dehydration of caprolactam solution. Journal of Industrial and Engineering Chemistry 18.3 (2012): 934-940.
    [52] Sajjan, A. M., Premakshi, H. G., & Kariduraganavar, M. Y. Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation. Journal of Industrial and Engineering Chemistry 25 (2015): 151-161.
    [53] Zhu, Yuexin, et al. Preparation of ceramic-supported poly (vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. Journal of Membrane Science 349.1-2 (2010): 341-348.
    [54] Devi, D. Anjali, et al. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. Journal of membrane science 262.1-2 (2005): 91-99.
    [55] Sun, Honglei, et al. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Separation and Purification Technology 58.3 (2008): 429-436.
    [27] D. Huang,W.Wang, Y. Kang, A. Wang, A chitosan/poly(vinyl alcohol) nanocomposite film reinforced with natural halloysite nanotubes, Polym. Compos. 33 (2012) 1693-1699.
    [28] M. C. Popescu, B. I. Dogaru, M. Goanta, D. Timpu, Structural and morphological evaluation of CNC reinforced PVA/Starch, International Journal of Biological Macromolecules 116 (2018) 385-393.
    [33] H. Hu, J. H. Xin, H. Hu, A. Chan, L. He, Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films, Carbohydrate Polymers 91 (2013) 305-313.
    [34] S. B. Bahrami, S. S. Kordestani, H. Mirzadeh, P. Mansoori, Poly (vinyl alcohol) - Chitosan Blends: Preparation, Mechanical and Physical Properties, Iranian Polymer Journal 12 (2003) 139-146.
    [29] J. Xu, Y. Zhang, Y. Gutha, W. Zhang, Antibacterial property and biocompatibility of Chitosan/Poly(vinylalcohol)/ZnO (CS/PVA/ZnO) beads as an efficient adsorbent for Cu (II) removal from aqueous solution, Colloids and Surfaces B: Biointerfaces 156 (2017) 340-348.
    [30] W. L. Du, S. S. Niu, Y. L. Xu, Z. R. Xu, C. L. Fan, Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions, Carbohydrate Polymers 75 (2009) 385-389.
    [31] H. A., Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag (I), J. Appl. Polym. Sci. 114 (2009) 2608-2615.
    [32] T. Yang, L. Zhang, L. Zhong, X. Han, S. Dong, Y. Li, Selective adsorption of Ag(I) ions with poly(vinyl alcohol) modified with thiourea (TU–PVA), Hydrometallurgy 175 (2018) 179-186.
    [64] N. T. Nguyen, J. H. Liu, Fabrication and characterization of poly(vinyl alohol)/chitosan hydrogel thin films via UV irradiation, Eur. Poly. J. 49 (2013) 4201-4211.
    [65] S. Haufe, J. Bohrisch, D. Schwarz, S. Y. Bratskaya, C. Steinbach,S. Schwarz,Flocculation efficiency of reacetylated water soluble chitosan versuscommercial chitosan, Colloids and Surfaces A 532 (2017) 222-227.
    [66] M.T.Yen, J.H.Yang & J.L.Mau, Physicochemical characterization of chitinand chitosan from crab shells, Carbohydrate Polymers75(2009) 15-21.
    [67] U. Habiba, T. A. Siddique, S. Talebian, J. J. L. Lee, A. Salleh,B. C. Ang, A. M. Afifi,Effect of deacetylation on property of electrospun chitosan/PVA nanofibrousmembrane and removal of methyl orange, Fe(III) and Cr(VI) ions, Carbohydrate Polymers 177 (2017) 32-39.
    [68] J. M. Yang ,W. Y. Su, T.L. Leu, M. C. Yang, Evaluation of chitosan/PVA blended hydrogel membranes, J. Membr. Sci. 236 (2004) 39-51.
    [69] P. Y. Zhuanga, Y. L. Li, L. Fan, J. Lin, Q. L. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, Int. J. Bio. Macromol. 50 (2012) 658-663.
    [70] L. L. Fernandes, C. X. Resende, D. S. Tavares, G. A. Soares, L. O. Castro, J. M. Granjeiro, Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering, Polimeros 21 (2011) 1-6.
    [71] U. Habiba, T. A. Siddique, S. Talebian, J. J. L. Lee, A. Salleh, B. C. Ang, A. M. Afifi, Effect of deacetylation on property of electrospun chitosan/PVA nanofibrousmembrane and removal of methyl orange, Fe(III) and Cr(VI) ions, Journal of Cleaner Production 185 (2018) 44-51.
    [72] S. K. Mishra, J.M.F. Ferreira, S. Kannan, Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants, Carbohydrate Polymers 121 (2015) 37-48.
    [73] J. Brandrop, E. H. Immergut, Polymer Handbook, Wiley. New York (1989) 31.
    [74] E. A. EL-Hefian, M. M. Nasef,A. H. Yahaya, Preparation and Characterization ofChitosan/Agar Blended Films: Part 2.Thermal, Mechanical, and Surface Properties, CODEN ECJHAOE-Journal of Chemistry 9 (2012) 510-516.
    [75] K. Lewandowska, Micibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures, Therm. Acta 493 (2009) 42-48.
    [76] I. Corazzari, R. Nisticò, F. Turci, M.G Faga, F. Franzoso, S. Tabasso, G. Magnacca, Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, Polym. Degrad. Stabil. 112 (2015) 1-9.
    [77] A. M. Sajjan, M. Y. Kariduraganavar, Development of novel membranes for PV separation of water- isopropanol mixtures using poly(vinylalcohol) and gelatin, J. Membr. Sci. 438 (2013) 8-17.
    [78] M.C. Burshe, S.B. Sawant, J. B. Joshi, V. G. Pangarkar, Sorption and permeation of binary alcohol-water systems through PVA membranes crosslinked with multifunctional crosslinking agents, Sep. Pur. Tec. 12 (1997) 145-156.
    [79] C.H. Lee, W.H. Hong, Influence of different degrees of hydrolysis of poly(vinyl alcohol) membrane on transport properties in pervaporation of IPA/water mixture, J. Membr. Sci. 135 (1997) 187-193.
    [80] K. S. V. Krishna Rao, M. C. Subha, M. Sairam, N. N. Mallikarjuna, T. M. Aminabhavi, Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran, J. Appl. Polym. Sci. 103 (2007) 1918-1926.
    [81] M. D. Kurkuri, U. S. Toti, T. M. Aminabhavi, Syntheses and characterization of blend membranes of sodium alginate and poly(vinyl alcohol) for the pervaporation separation of water- isopropanol mixtures, J. Appl. Polym. Sci. 86 (2002) 3642-3651.

    無法下載圖示 全文公開日期 2023/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE