簡易檢索 / 詳目顯示

研究生: 丁心惠
Xin-Huims Ding
論文名稱: 可降解血管止血器的設計與製作
Design and fabrication of degradable vascular closure device
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 郭俞麟
Yu-Lin, Joseph, Kuo
郭俞麟
Yu-Lin, Joseph, Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 水凝膠聚乙烯醇明膠血管止血器
外文關鍵詞: hydrogels, polyvinyl alcohol, gelatin, vascular closure devices
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床上的血管介入性手術,如心導管檢查及植入血管支架,經常以股動脈作為導管進入的部位。在術後股動脈穿刺的止血上,一般會以手動加壓(manual compression, MC)進行止血,然而MC 所耗費的止血時間長(約10 到20 分鐘),且持續性的加壓易讓患者感到疼痛不適。而血管止血器(vascular closure devices, VCDs)改善了MC 的缺點,VCDs 僅需約5分鐘就可達到止血效果,讓患者可以更早下床活動,但由於裝置操作複雜、成本較高等因素,使VCDs 應用上僅佔所有股動脈止血手術的40%。
    有鑑於此,本研究提出新型的可降解股動脈穿刺止血器,透過凍融循環將具有生物可降解性的聚乙烯醇 (polyvinyl alcohol, PVA)與明膠(Gelatin)製作成圓管型的水凝膠止血器,藉由PVA/Gelatin 水凝膠材料吸水可膨脹的特性,將完全乾燥的止血器在經由血管鞘置入股動脈傷口後,吸收血液與水分在5 分鐘內迅速膨脹以達封堵傷口之目的。此方法不僅避免需長時間止血的手動加壓,同時改善VCDs 在使用上較複雜的操作流程。
    本研究將不同比例的PVA/Gelatin 水凝膠材料製成水凝膠試片與直徑為8mm(股動脈直徑大小)圓管型的止血器原型,將其乾燥後放置於水中,測試材料吸水膨脹後的結構完整性,及探討不同厚度對吸水膨脹時間和擴張力之影響,並建立股動脈模擬環境之平台,測試在股動脈的血壓(76mmHg)與血流量(284ml/min)環境下,止血器原型是否能順利擴張及貼合管壁,並以此建立適合作為股動脈可降解止血器的設計參數。
    論文實驗結果顯示,製作壁厚為1mm,比例為7:3 的PVA/Gelatin 水凝膠止血器原型,其管徑可在5 分鐘內吸水膨脹至8mm,並且在模擬股動脈的血壓和血流環境測試中,證明此比例與厚度之參數可提供足夠的擴張力,使其順利貼合並維持固定於管壁,成功符合止血器的止血條件。
    另外,經由公式推算,在乾燥後的止血器原型,可順利收縮進6F(2mm)
    的導管內。


    In clinical vascular interventional operations, such as cardiac
    catheterization and implantation of vascular stents, the femoral artery is often
    used as the catheter entry site. In the hemostasis of femoral artery puncture
    after surgery, manual compression (MC) is generally used for hemostasis.
    However, MC takes a long time to stop bleeding (approximately 10 to 20
    minutes), and the continuous compression makes the patient feel painful and
    uncomfortable. Vascular closure devices (VCDs) improve the shortcomings of
    MC, VCDs only need about 5 minutes to achieve hemostatic effect, so that
    patients can get out of bed earlier. However, due to the complicated operation
    of the equipment and the high cost, the application of VCDs only accounts for
    40% of all femoral artery hemostasis operations.
    In view of this, this study proposes a new degradable femoral artery
    puncture hemostatic device. Through freeze-thaw cycles, biodegradable
    polyvinyl alcohol (PVA) and gelatin are made into a tubular hydrogel
    hemostatic device, by PVA/Gelatin hydrogel material absorbs water swelling
    properties, placing a completely dry hydrogel hemostatic device into the
    femoral artery wound through the vascular sheath, absorb blood and water
    and expand rapidly within 5 minutes to seal the wound. This method not only
    avoids manual compression that requires a long time to stop bleeding, but also
    improves the complicated operation process of using VCDs.
    In this study, different ratios of PVA/Gelatin hydrogel materials were
    made into hydrogel test pieces and tubular hemostatic test pieces with a
    diameter of 8mm (femoral artery diameter). After they were dried, they were
    IV
    placed in water to test the structural integrity of the material, and to explore
    the influence of different thickness on the water swelling time and expansion force, and establish a platform for the femoral artery simulation environment
    to test whether the hemostatic device test piece can smoothly expand and fit
    the tube wall under the femoral artery blood pressure (76mmHg) and blood
    flow (284ml/min) environment, so as to establish a suitable femoral artery
    parameters of degradable hemostatic device.
    The results has shown that the PVA/Gelatin hydrogel hemostatic device
    test piece with a wall thickness of 1mm and a ratio of 7:3 be able expanded to
    a diameter of 8mm in 5 minutes by absorbing water, and it can simulate the
    blood pressure and blood pressure of the femoral artery. In the test of the flow
    environment, it is proved that the parameters of this ratio and thickness can
    provide enough expansion force to make it fit smoothly and remain fixed on
    the tube wall, and successfully meet the hemostatic conditions of the
    hemostatic device. Calculated by the formula, the size after being dried can be
    smoothly shrunk into the 6F (2mm) catheter.

    摘要............................................................................. I Abstract ............................................................................... III 誌謝 ................................................................................. V 第一章 緒論 ............................................................................... 1 1.1 研究背景 ................................................................................ 1 1.2 研究動機與目的 ................................................................................. 7 第二章 文獻回顧 ................................................................................. 9 2.1 水凝膠的介紹 ................................................................................. 9 2.1.1 聚乙烯醇(PVA)水凝膠 ........................................................................ 9 2.2 水凝膠的形成 ........................................................................................ 11 2.2.1 物理交聯-凍融循環法(freeze‐thaw cycles, FT) ................................ 12 2.3 PVA/Gelatin 水凝膠 .............................................................................. 13 2.3.1 明膠(Gelatin, GE) ............................................................................... 13 2.3.2 PVA/Gelatin 水凝膠之生物可降解性 ............................................... 15 2.3.2PVA/Gelatin 水凝膠內皮化(Endothelialization) ................................ 17 第三章 實驗方法與規劃 ...................................................................... 21 VII 3.1 研究方法 ................................................................................................ 21 3.1.1 可降解血管止血器概念 ..................................................................... 21 3.1.2 實驗規劃 ............................................................................................. 23 3.2 實驗藥品 ................................................................................................ 24 3.3 實驗設備與儀器 .................................................................................... 25 3.3.1 電磁加熱攪拌器(Hot Plate and Magnetic Stirrer) ............................. 25 3.3.2 冷凍循環水槽(Cooling Circulator) .................................................... 26 3.3.3 熱風循環烘箱(Cyclic Oven) .............................................................. 27 3.3.4 3D 列印機 ........................................................................................... 28 3.4 實驗流程 ............................................................................................. 29 3.4.1 PVA/Gelatin 水凝膠製作 ................................................................... 29 3.4.2 可降解血管止血器製作參數探討..................................................... 31 3.5 可降解血管止血器之原型設計與製作 ............................................... 34 3.5.1 3D 列印可降解血管止血器之原型模具 ........................................... 35 3.6 建立股動脈模擬環境平台 .................................................................... 36 3.7 可降解血管止血器原型之擴張力測試 ............................................... 38 第四章 結果與討論 ............................................................................... 40 VIII 4.1 PVA/Gelatin 水凝膠之水中結構完整性測試 ...................................... 40 4.2 探討PVA/Gelatin 水凝膠的比例與厚度對水中膨脹之影響 ............ 41 4.3 可降解止血器原型試片之水中膨脹時間測試 ................................... 46 4.4 股動脈環境模擬平台測試 .................................................................... 56 4.5 擴張力比較測試 .................................................................................... 59 4.6 止血器試片捲曲乾燥測試 .................................................................... 64 第五章 結論與未來展望 ...................................................................... 66 5.1 結論 ........................................................................................................ 66 5.2 未來展望 ............................................................................................... 68 參考文獻.................................................................................................... 70

    [1]http://www.anscare.co/chinese/educations/detail.php?dpid=15
    [2]Noori, V. J., & Eldrup-Jørgensen, J. (2018). A systematic review of
    vascular closure devices for femoral artery puncture sites. Journal of vascular
    surgery, 68(3), 887-899.
    [3]Dauerman, H. L., Applegate, R. J., & Cohen, D. J. (2007). Vascular closure
    devices: the second decade. Journal of the American College of Cardiology,
    50(17), 1617-1626.
    [4]https://evtoday.com/articles/2015-jan/vascular-closure-device-update
    [5]Noori, V. J., & Eldrup-Jørgensen, J. (2018). A systematic review of
    vascular closure devices for femoral artery puncture sites. Journal of vascular
    surgery, 68(3), 887-899.
    [6]Bechara, C. F., Annambhotla, S., & Lin, P. H. (2010). Access site
    management with vascular closure devices for percutaneous transarterial
    procedures. Journal of vascular surgery, 52(6), 1682-1696
    [7] https://thoracickey.com/vascular-access-and-closure/
    [8]Khan, S., Ullah, A., Ullah, K., & Rehman, N. U. (2016). Insight into
    hydrogels. Designed Monomers and Polymers, 19(5), 456-478.
    [9]https://www.sigmaaldrich.com/catalog/product/aldrich/363146?lang=en&r
    egion=TW
    [10]Lozinsky, V. I., & Plieva, F. M. (1998). Poly (vinyl alcohol) cryogels
    employed as matrices for cell immobilization. 3. Overview of recent research
    and developments. Enzyme and microbial technology, 23(3-4), 227-242
    [11]Kamoun, E. A., Chen, X., Eldin, M. S. M., & Kenawy, E. R. S. (2015).
    Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A
    review of remarkably blended polymers. Arabian Journal of chemistry, 8(1),
    1-14.
    [12]Peppas, N. A. (1975). Turbidimetric studies of aqueous poly (vinyl
    alcohol) solutions. Die Makromolekulare Chemie: Macromolecular
    Chemistry and Physics, 176(11), 3433-3440.
    [13]Zhang, H., Zhang, F., & Wu, J. (2013). Physically crosslinked hydrogels
    from polysaccharides prepared by freeze–thaw technique. Reactive and
    Functional Polymers, 73(7), 923-928
    [14]Pezron, I., Djabourov, M., & Leblond, J. (1991). Conformation of gelatin
    chains in aqueous solutions: 1. A light and small-angle neutron scattering
    71
    study. Polymer, 32(17), 3201-3210.
    [15]Bajpai, A. K., & Saini, R. (2005). Preparation and characterization of
    biocompatible spongy cryogels of poly (vinyl alcohol)–gelatin and study of
    water sorption behaviour. Polymer international, 54(9), 1233-1242.
    [16] https://scitechvista.nat.gov.tw/c/skYW.htm
    [17]Mahnama, H., Dadbin, S., Frounchi, M., & Rajabi, S. (2017). Preparation
    of biodegradable gelatin/PVA porous scaffolds for skin regeneration. Artificial
    cells, nanomedicine, and biotechnology, 45(5), 928-935.
    [18]Ceylan, S., Göktürk, D., & Bölgen, N. (2016). Effect of crosslinking
    methods on the structure and biocompatibility of polyvinyl alcohol/gelatin
    cryogels. Bio-medical materials and engineering, 27(4), 327-340.
    [19]Liu, Y., Vrana, N. E., Cahill, P. A., & McGuinness, G. B. (2009).
    Physically crosslinked composite hydrogels of PVA with natural
    macromolecules: structure, mechanical properties, and endothelial cell
    compatibility. Journal of Biomedical Materials Research Part B: Applied
    Biomaterials, 90(2), 492-502.
    [20]Lim, K. S., Alves, M. H., Poole-Warren, L. A., & Martens, P. J. (2013).
    Covalent incorporation of non-chemically modified gelatin into degradable
    PVA-tyramine hydrogels. Biomaterials, 34(29), 7097-7105.
    [21]Marrella, A., Lagazzo, A., Dellacasa, E., Pasquini, C., Finocchio, E.,
    Barberis, F., & Scaglione, S. (2018). 3D porous gelatin/PVA hydrogel as
    meniscus substitute using alginate micro-particles as porogens. Polymers,
    10(4), 380.
    [22]Spector, K. S., & Lawson, W. E. (2001). Optimizing safe femoral access
    during cardiac catheterization. Catheterization and cardiovascular
    interventions, 53(2), 209-212.
    [23]PARK, M. K., & GUNTHEROTH, W. G. (1970). Direct blood pressure
    measurements in brachial and femoral arteries in children. Circulation, 41(2),
    231-237.
    [24]Holland, C. K., Brown, J. M., Scoutt, L. M., & Taylor, K. J. (1998).
    Lower extremity volumetric arterial blood flow in normal
    subjects. Ultrasound in medicine & biology, 24(8), 1079-1086.

    無法下載圖示 全文公開日期 2026/02/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE