簡易檢索 / 詳目顯示

研究生: 高鈺智
Kao-Yu Kao
論文名稱: 光聚合雙離子型共聚作為溫感及高強度水凝膠之應用
UV-initiated polymerization of Zwitterionic polymers for thermosensitive tough hydrogel
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chie Hu
邱智瑋
Chih-Wei Chiu
何明樺
Ming-Hua Ho
鍾次文
Tze-Wen Chung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 水凝膠溫度應答
外文關鍵詞: Zwitterionic polymers, Thermosensitive
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究中主要以低能量、環保和高效率之光聚合反應探討雙離子型高分子合成和提升水凝膠強度。凝膠含有兩種雙離子型高分子,2-甲基丙烯酰氧基乙基磷酰膽鹼(poly-MPC)和[2-(甲基丙烯酰氧基)乙基]二甲基 - (3-磺丙基)氫氧化銨(poly-DMAPS)分別具有不同的雙離子之電荷作用性。其中poly-DMAPS具有高分子鏈段與鏈段之間以及高分子鏈段之內的交互作用力,此作用力導致poly-DMAPS最高臨界溶解溫度upper critical solution temperature(UCST) ,即低溫時分子鏈聚集而升高溫度時此鏈聚集因熱能而解開,而溫度範圍取決於高分子之分子量及水溶液中高分子之濃度。對於低分子量的聚DMAPS高分子(63kDa),調控溶液中濃度,1wt%, 5wt%和10wt%,其最高臨界溶解溫度(UCST)為出37°C, 42°C和49°C,對於高分子量的DMAPS高分子(92kDa),溶液濃度1wt%, 5wt%和10wt%,其最高臨界溶解溫度(UCST)51°C, 57°C 和69°C,高分子量及高濃度水溶液需要更高熱能才能解開此聚集。為了進一步製備高強度的含雙離子型高分子之水凝膠,我們探討了互相穿透的雙離子型高分子雙網絡水凝膠,設計方法是將一雙離子型高分子均勻分散及交聯於另一雙離子型高分子水凝膠中。第一種水凝膠將poly-MPC混合在poly-DMAPS交聯的網絡中,命名為MD膠,其網絡中,物理和化學的交聯位於同一高分子鏈上;第二種水凝膠將poly-DMAPS混合在poly-MPC交聯的網絡中,命名為DM膠,其網絡中物理交聯的部分位於poly-DMAPS鏈段,化學交聯的部分位於poly-MPC鏈段。和DM膠與無序排列的交相比,MD膠擁有最強的黏度值,結果驗證了在水凝膠若於相同鏈段上若含軟(物理交聯)及硬(化學交聯) ,能夠得到較高強度的雙離子型高分子水凝膠。MD膠表現出高的黏度值(1.4MPa•s)和更密集的結構(孔徑約4微米)。此外,我們進一步測試了設計的水凝膠對細胞沾黏實驗和動物模型的抗沾黏測試。結果表示高強度的水凝膠在體內植入中的潛在之應用性。


    Abstract
    In this study, zwitterionic polymers and hydrogels were synthesized under low energy, eco-friendly, and high efficiency photo-polymerization. Two zwitterionic polymers, 2-Methacryloyloxyethyl phosphorylcholine (poly-MPC) and [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (poly-DMAPS) exhibited different electrostatic charge interaction. The inter and intrapolymer interaction in poly-DMAPS resulted upper critical solution temperature (UCST) property. In addition, the UCST of poly-DMAPS can be tuned with concentration of polymer solution and molecular weight. For low molecular weight of poly-DMAPS (21kDa), the UCST presented at 37°C, 42°C and 49°C for the concentration range from 1wt%, 5wt% to 10wt%, respectively. For high molecular weight of poly-DMAPS (46kDa), the UCST presenting 51°C, 57°C and 69°C for the polymer concentration range from 1wt%, 5wt% to 10wt%, respectively. To further preparation of tough hydrogel, we consider to prepare zwitterionic hydrogel with interpenetrating double network. The designed system was that, one of the zwitterionic polymer was homogenously dispersed inside another zwitterionic polymeric hydrogel. In the first gel, the synthesized poly-MPC was blended in poly-DMAPS hydrogel, called MD gel. In the MD gel, this gel involved chemical crosslinking and physical crosslinking (electrostatic interaction chain) at the same chain. In the second gel, the synthesized poly-DMAPS was blende in poly-MPC hydrogel, called DM gel. In the DM gel, the physical crosslinking moiety was at poly-DMAPS and chemical crosslinking moiety was at poly-MPC, separately. The highest viscosity was founded in MD hydrogel when compare with DM and random gels. This result suggests that the tough zwitterionic hydrogel can be obtained by designing the rigid and soft crosslink moiety at same network. In addition, the MD hydrogel also exhibited a higher compressive strength of 1.4 MPa•s and a denser packed structure (pore size = 4μm) than that of DM and random gels. We have further tested the design hydrogel on cell adhesion experiment and anti-adhesion of surgical animal model. Those result indicated the further potential application of tough hydrogel in bio-implanted application.

    Contents Abstract 1 1.Introduction 7 1.1 Hydrogel 7 1.2 Classification of hydrogels 7 1.3Physical crosslinked hydrogels 8 1.4 Chemical crosslinked hydrogels 12 1.5 Tough hydrogel 14 1.6 Stimuli hydrogels 19 1.7 LCST type polymer 24 1.8 UCST type polymer 25 Motivation 27 2. Experiment section 28 2.1Materials and Instruments 28 2.1.1 Materials 28 2.1.2 Instruments 28 2.2 Sample Synthesis 29 2.2.1 Hydrogel preparation 29 2.2.2 Polymer purification 31 2.2.3 Nuclear magnetic resonance (NMR) 31 2.2.4 Gelation time 32 2.2.5 Swelling measurement 33 2.2.6 Mechanical property measurement 33 2.2.7 Turbidity measurements 34 2.2.8 Gel permeation chromatography (GPC) 34 2.2.9 Raman measurement 34 2.2.10 Morphology studies 35 2.2.11 In vitro adhesion test 35 2.2.12 In vivo adhesion test 35 3. Result and discussion 37 3.1 Zwitterionic polymer synthesis 37 3.2 Molecular weight 39 3.3 UCST turbidity measurement 40 3.4 Synthesis co-polymeric hydrogels 43 3.5 UV irradiation cooperate with 3D printed holder 45 3.6. The characterization of homogeneity of hydrogel by RAMAN spectrum 46 3.7 Rheology property test of zwitterionic hydrogel 50 3.8 Morphology of hydrogel 54 3.9 Swelling property 56 Table 1 Swelling property for different synthesized hydrogel 57 3.10 Raman 3D mapping 57 3.11 Cell adhesion test (preliminary results) 62 3.12 Effect of anti-adhesion on animal experiment (preliminary results) 63 Conclusion 64 Reference 65

    Reference
    1. Caló, E. and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267.
    2. Varaprasad, K., et al., A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl, 2017. 79: p. 958-971.
    3. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21.
    4. Iizawa, T., et al., Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of Applied Polymer Science, 2007. 104(2): p. 842-850.
    5. Yang, L., J.S. Chu, and J.A. Fix, Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. International Journal of Pharmaceutics, 2002. 235(1): p. 1-15.
    6. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015. 6(2): p. 105-121.
    7. Maolin, Z., et al., The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiation Physics and Chemistry, 2000. 58(4): p. 397-400.
    8. de Jong, S.J., et al., Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. Journal of Controlled Release, 2001. 72(1): p. 47-56.
    9. Jing, Y., et al., A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. Polymer Reviews, 2016. 56(2): p. 262-286.
    10. Gacesa, P., Alginates. Carbohydrate Polymers, 1988. 8(3): p. 161-182.
    11. Srimongkon, T., S. Mandai, and T. Enomae, Application of Biomaterials and Inkjet Printing to Develop Bacterial Culture System. Advances in Materials Science and Engineering, 2015. 2015: p. 9.
    12. Hassan, C.M. and N.A. Peppas, Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules, 2000. 33(7): p. 2472-2479.
    13. Tsou, Y.-H., et al., Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 2016. 1(1): p. 39-55.
    14. Weijers, M., R.W. Visschers, and T. Nicolai, Light Scattering Study of Heat-Induced Aggregation and Gelation of Ovalbumin. Macromolecules, 2002. 35(12): p. 4753-4762.
    15. <Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips, Hydrogels Methods of Preparation, Characterisation and Applications.pdf>.
    16. Alupei, I.C., et al., Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol): 1. The study of the swelling properties. European Polymer Journal, 2002. 38(11): p. 2313-2320.
    17. Langer, R.S. and N.A. Peppas, Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials, 1981. 2(4): p. 201-214.
    18. Das, D. and S. Pal, Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances, 2015. 5(32): p. 25014-25050.
    19. Park, K.M., et al., Synthesis and Characterizations of In Situ Cross-Linkable Gelatin and 4-Arm-PPO-PEO Hybrid Hydrogels via Enzymatic Reaction for Tissue Regenerative Medicine. Biomacromolecules, 2012. 13(3): p. 604-611.
    20. Kuijpers, A.J., et al., In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. Journal of Controlled Release, 2000. 67(2): p. 323-336.
    21. Owens, G.J., et al., Sol–gel based materials for biomedical applications. Progress in Materials Science, 2016. 77: p. 1-79.
    22. Costa, A.M.S. and J.F. Mano, Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review. European Polymer Journal, 2015. 72: p. 344-364.
    23. Tang, L., W. Liu, and G. Liu, High-Strength Hydrogels with Integrated Functions of H-bonding and Thermoresponsive Surface-Mediated Reverse Transfection and Cell Detachment. Advanced Materials, 2010. 22(24): p. 2652-2656.
    24. Zheng, S.Y., et al., Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick–Slip Tearing Behavior, and Good Processability. Macromolecules, 2016. 49(24): p. 9637-9646.
    25. Fang, J., et al., Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nature Communications, 2013. 4: p. 2974.
    26. Gong, J.P., et al., Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials, 2003. 15(14): p. 1155-1158.
    27. Liu, Y., et al., Recent Developments in Tough Hydrogels for Biomedical Applications. Gels, 2018. 4(2): p. 46.
    28. Haraguchi, K., Nanocomposite hydrogels. Current Opinion in Solid State and Materials Science, 2007. 11(3): p. 47-54.
    29. Ihsan, A.B., et al., A phase diagram of neutral polyampholyte – from solution to tough hydrogel. Journal of Materials Chemistry B, 2013. 1(36).
    30. Haque, M.A., T. Kurokawa, and J.P. Gong, Super tough double network hydrogels and their application as biomaterials. Polymer, 2012. 53(9): p. 1805-1822.
    31. Bindu, P.V. and P.S. Thilagam, Mining social networks for anomalies: Methods and challenges. Journal of Network and Computer Applications, 2016. 68: p. 213-229.
    32. Gorman, G.E., Social Network Analysis, 3rd edition. Online Information Review, 2015. 39(1): p. 141-144.
    33. Suresh, G. and L.S. Jayakumari, Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks. Polímeros, 2015. 25: p. 49-57.
    34. Ahn, S.-k., et al., Stimuli-responsive polymer gels. Soft Matter, 2008. 4(6): p. 1151-1157.
    35. Shin, J., P.V. Braun, and W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B: Chemical, 2010. 150(1): p. 183-190.
    36. Echeverria, C., et al., Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 2018. 4(2): p. 54.
    37. Fomina, N., J. Sankaranarayanan, and A. Almutairi, Photochemical mechanisms of light-triggered release from nanocarriers. Advanced Drug Delivery Reviews, 2012. 64(11): p. 1005-1020.
    38. Moriyama, K., et al., Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells. Chemical Communications, 2014. 50(44): p. 5895-5898.
    39. Clark, E.A. and J.E.G. Lipson, LCST and UCST behavior in polymer solutions and blends. Polymer, 2012. 53(2): p. 536-545.
    40. Seuring, J. and S. Agarwal, Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromolecular Rapid Communications, 2012. 33(22): p. 1898-1920.
    41. Ogata, T., T. Nonaka, and S. Kurihara, Permeation of solutes with different molecular size and hydrophobicity through the poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membrane. Journal of Membrane Science, 1995. 103(1): p. 159-165.
    42. Tang, S., et al., Development of Novel N-isopropylacrylamide (NIPAAm) Based Hydrogels with Varying Content of Chrysin Multiacrylate. Gels (Basel, Switzerland), 2017. 3(4): p. 40.
    43. Shimada, N., S. Kidoaki, and A. Maruyama, Smart hydrogels exhibiting UCST-type volume changes under physiologically relevant conditions. RSC Advances, 2014. 4(94): p. 52346-52348.
    44. Karjalainen, E., V. Aseyev, and H. Tenhu, Upper or lower critical solution temperature, or both? Studies on cationic copolymers of N-isopropylacrylamide. Polymer Chemistry, 2015. 6(16): p. 3074-3082.
    45. Yang, B., et al., Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomedicine, 2012. 7: p. 547-57.
    46. Zhu, L., et al., Poly(2-(methacryloyloxy) ethyl phosphorylcholine)-functionalized multi-walled carbon nanotubes: Preparation, characterization, solubility, and effects on blood coagulation. Journal of Applied Polymer Science, 2009. 113(1): p. 351-357.
    47. Sae-ung, P., et al., Antifouling Stripes Prepared from Clickable Zwitterionic Copolymers. Langmuir, 2017. 33(28): p. 7028-7035.
    48. Seuring, J. and S. Agarwal, First Example of a Universal and Cost-Effective Approach: Polymers with Tunable Upper Critical Solution Temperature in Water and Electrolyte Solution. Macromolecules, 2012. 45(9): p. 3910-3918.
    49. Lambermont-Thijs, H.M.L., et al., Temperature Induced Solubility Transitions of Various Poly(2-oxazoline)s in Ethanol-Water Solvent Mixtures. Polymers, 2010. 2(3).p. 188-199
    50. Higgins, J.S., J.E.G. Lipson, and R.P. White, A simple approach to polymer mixture miscibility. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1914): p. 1009-1025.
    51. De Santis, S., C. La Mesa, and G. Masci, On the upper critical solution temperature of PNIPAAM in an ionic liquid: Effect of molecular weight, tacticity and water. Polymer, 2017. 120: p. 52-58.
    52. Self-Assembly of Cholesterol-Containing Water-Soluble Polymers. International Journal of Polymer Science, 2012. 2012.
    53. Zheng, H., et al., UV-initiated polymerization of hydrophobically associating cationic flocculants: Synthesis, characterization, and dewatering properties. Chemical Engineering Journal, 2013. 234: p. 318-326.
    54. Cho, J.-D. and J.-W. Hong, Photo-curing kinetics for the UV-initiated cationic polymerization of a cycloaliphatic diepoxide system photosensitized by thioxanthone. European Polymer Journal, 2005. 41(2): p. 367-374.
    55. Gordon, K.C. and C.M. McGoverin, Raman mapping of pharmaceuticals. International Journal of Pharmaceutics, 2011. 417(1): p. 151-162.
    56. Sangaletti, L., et al., Oxidation of Sn Thin Films to SnO2. Micro-Raman Mapping and X-ray Diffraction Studies. Journal of Materials Research, 1998. 13(9): p. 2457-2460.
    57. Gong, J.P., Why are double network hydrogels so tough? Soft Matter, 2010. 6(12): p. 2583-2590.
    58. Parmar, I.A., et al., Thermo-reversible sol–gel transition of aqueous solutions of patchy polymers. RSC Advances, 2017. 7(9): p. 5101-5110.
    59. Hussain, I., et al., Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions. European Polymer Journal, 2018. 105: p. 85-94.
    60. Montheil, T., et al., Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. Journal of Materials Chemistry B, 2018. 6(21): p. 3434-3448.
    61. Jiang, S. and Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.

    無法下載圖示 全文公開日期 2024/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE