簡易檢索 / 詳目顯示

研究生: 黃俊峰
Chun-Feng Huang
論文名稱: 共摻雜型氧化鈰電解質及複合纖維陰極的微觀特徵與電性
Microstructural characterization and electrical properties of co-doped ceria electrolytes and composite fiber cathodes
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 段維新
Wei-Hsing Tuan
林昆霖
Kun-Lin Lin
蔡大翔
Dah-Shyang Tsai
郭俞麟
Yu-Lin, Joseph, Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 205
中文關鍵詞: 氧空位共摻雜氧化鈰複合纖維陰極催化特性
外文關鍵詞: oxygen vacancy, co-doped ceria, composite fiber cathode, catalytic property
相關次數: 點閱:382下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用穿透式電子顯微鏡、拉曼光譜儀、X光繞射分析儀、交流阻抗分析儀等,分析共摻雜氧化鈰電解質的微觀特性、氧空位分佈與離子導電之關聯性,以及複合纖維陰極的催化特性。
    首先,氧化釓(Gd2O3)與氧化鍶(SrO)共摻雜含量對於兩種不同共摻雜氧化鈰系統(Ce0.8Gd0.2-xSrxO1.9-0.5x and Ce0.8-xGd0.2SrxO1.9-x),對微觀、離子電導率與氧空缺含量的影響進行研究。X光繞射圖譜的結果顯示所有的試片呈現立方相的結構。共摻雜氧化鈰系統的晶格常數隨著摻雜含量提升而呈現線性上升,其歸因於鍶離子具有較大的離子半徑。於相同的氧化鍶摻雜量下,共摻雜氧化鈰系統Ce0.8-xGd0.2SrxO1.9-x的粒徑明顯大於另一個Ce0.8Gd0.2-xSrxO1.9-0.5x系統;根據氧空缺含量的計算,Ce0.8-xGd0.2SrxO1.9-x具有較多的氧空缺數量,有助於氧離子、缺陷或不純物的擴散。少量的氧化鍶添加於GDC電解質將有效於提升離子電導率,但是電性迅速下降出現於氧化鍶重度摻雜的條件下。有趣的是,在共摻雜氧化鈰系統中,非對稱的拉曼F2g峰和氧空缺相依的拉曼散射峰則出現於465 cm-1 和 566 cm-1附近的拉曼位移位置。二價與三價陽離子摻雜於氧化鈰會產生不同的氧空缺分佈,並且可以藉由拉曼光譜分析去分離其摻雜的貢獻。可發現隨著氧化鍶摻雜量增加,氧空缺拉曼散射峰566 cm-1強度降低;而氧化鈰主要的拉曼散射峰則朝向低頻位移。此表示,共摻雜系統氧空缺含量隨著Gd3+和Sr2+共摻雜濃度增加而提升,雖然於拉曼位移566 cm-1處的拉曼散射峰強度值,隨著Sr2+於GDC的數量增加而降低,且共摻雜GDC的離子電導率有明顯上升;但是若GDC主散射峰F2g非對稱性大幅降低,且半高寬明顯提升的時候,則會因為產生嚴重的晶格畸變而使離子電導率快速下降,此現象則出現在重度摻雜的時候。因此我們認為,拉曼光譜是分析區域細微結構與離子電導率關係的重要工具之一,並且藉由拉曼光譜散射峰的變化則可以預估共摻雜系統離子電導率的變化。詳細的討論內容與數據呈現則歸納於本文中。
    其次,本論文利用靜電紡絲手法製作Ce0.78Gd0.2Sr0.02O2-δ(GSDC)微奈米纖維,並對製程參數進行系統性的研究,將陶瓷纖維製程最佳化。結果顯示,最佳製備條件為電壓20kV、polyvinyl pyrrolidone(PVP)濃度為整體溶液的11.32wt%,可得到直徑均勻150nm,表面平滑且連續的GSDC纖維。觀察傳統爐燒與微波燒結對於GSDC微奈米纖維微觀變化的影響。與傳統爐燒相比,在低溫微波燒結微奈米GSDC纖維就可以明顯達到成相的結晶性,將有利於離子的傳導,進而提升整體的電極性能表現。
    複合80 wt% LSCF- 20 wt% GSDC (L8G2)纖維陰極的交換電流密度值明顯高於其它LSCF-GSDC的複合陰極。此外,快速的升溫速率與較少的燒結時間則有助於抑制嚴重的纖維成長與陰極緻密度。藉由微波燒結的複合纖維陰極L8G2材料系統,則呈現較低的極化電阻與較高的交換電流密度,其歸因於多孔結構提升三相點的範圍而增加氧氣的還原反應機率。總之,微波燒結的LSCF-GSDC複合纖維陰極在低的燒結溫度提供了提升催化特性的可能性。研究結果則證實,利用微波燒結製作靜電紡絲複合纖維陰極的新技術,提供更廉價與方便的方式製作複合陰極,能提升三相點催化氧氣之活性,並增加催化反應面積與速率,有助於提升SOFC之效能。


    In this study, the relationship among microstructure features, oxygen vacancy distributions and ionic conductivities of Gd3+ and Sr2+ co-doped ceria electrolytes and catalytic properties the ceria-based fiber cathodes are investigated by using transmission electron microscopy (TEM), Raman Spectrometer, X-ray diffractometer and AC impedance analyzer.
    First, effect of Gd2O3 and SrO co-dopants amount on microstructural features, ionic conductivities and oxygen vacancy concentrations of two modified ceria electrolytes (Ce0.8Gd0.2-xSrxO1.9-0.5x and Ce0.8-xGd0.2SrxO1.9-x) are studied. The XRD results reveal that all specimens are cubic structure. Lattice parameters of co-doped ceria were observed to linearity increase with an increase of co-dopants amount, due to large radius of Sr2+. Grain size of Ce0.8-xGd0.2SrxO1.9-x is significantly larger than that of Ce0.8Gd0.2-xSrxO1.9-0.5x at the same Sr2+ concentration, because Ce0.8-xGd0.2SrxO1.9-x possesses more oxygen vacancy to migrate oxygen ion, defects and impurities easily based upon calculation of oxygen vacancy amount. Small addition of SrO into 20 mol.% Gd2O3 doped ceria was effective in enhancing of ionic conductivity, but a sudden decreasing of conductivity with Sr2+ heavy-doping. It is interesting that asymmetry Raman bands of the F2g and vacancy modes appear in aliovalent cations co-doped ceria at around 465 cm-1 and 566 cm-1 respectively.
    Different morphologies of oxygen vacancy distribution affected by di- and tri-valent cations in two co-doped ceria systems could be separated and analyzed from Raman spectra. An decrease of intensity of the observed Raman band at 566 cm-1 and the negative frequency shifts of the F2g mode intensity with increased doping is found, indicating that the oxygen vacancy amount increases as the Gd3+ and Sr2+ concentrations increase. The peak intensity of 566 cm-1 feature increased with decreasing of oxygen vacancy amount when addition of Sr2+ in GDC, and then ionic conductivity of co-doped ceria was enhanced. But, if the F2g peak becomes increasingly asymmetric and full width at half maximum of the F2g peak significantly increases with Sr2+ content due to formation of serious distortion of lattice in co-doped ceria. It is found rapid decrease of ionic conductivity in co-doped ceria. We propose that Raman scattering is a very useful analytical tool for the study of relationship between variations of ionic conductivity and localized find structure of co-doped ceria and to estimate the variation of ionic conductivity. The details for discussing the relationship between localized fine structure and ionic conductivity in co-doped ceria systems were also discussed in this work.
    Second, the influence of electrospinning parameters including polymer and applied voltage on microstructural features of Ce0.78Gd0.2Sr0.02O2-δ (GSDC) nanofiber are also investigated. Cathode catalyst of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) particle mixed nano-GSDC electrolyte fiber is coated onto GSDC electrolyte to study its catalytic property. The experimental results that a uniform GSDC nano-fiber of 150 nm diameter could be spun at the concentration of polyvinyl pyrrolidone (PVP) approximately 11.32 wt.% and applied voltage of 20 kV. Variations of microstructures in nano GSDC fiber with conventional furnace and microwave sintering were studied as well. Compared to conventional furnace sintering, significant improvement in crystallinity and density of GSDC fiber at lower sintering temperatures with microwave sintering was observed.
    The exchange current density of the 80 wt% LSCF- 20 wt% GSDC (L8G2) nano-fiber composite cathode is much better than that of other LSCF-GSDC fiber cathodes. In addition, rapid heating rate and short sintering time for restricting serious fiber growth and density of cathode were observed as well. LSCF-GSDC fiber cathodes sintered by microwave furnace demonstrate the lower polarization resistances and the higher exchange current values. It is due to increasing of three phase boundary by porous fiber structure to increment oxygen reduction reaction. According to these above results, we would like to emphasize that microwave sintered LSCF-GSDC fiber cathode at low sintering temperatures provides the ability to enhance catalytic properties. The experimental results in this study confirmed that the new technology including fabrication of electrospun nano-fiber cathode by microwave sintering proposed will provide a more convenient and cheap approach to the fabrication of the composite fiber cathode.

    中文摘要 I 英文摘要 IV 致謝 VI 目錄 VIII 圖索引 XII 表索引 XX 第一章 緒論 1 第二章 文獻回顧 3 2-1 固態氧化物燃料電池簡介 3 2-2 電解質基本傳導原理 9 2-3 氧化鈰基電解質 14 2-3-1 氧化鈰結構與導電特性 16 2-3-2 摻雜對氧化鈰電性的影響 18 2-4 靜電紡絲簡介 26 2-4-1 靜電紡絲原理 27 2-4-2 影響靜電紡絲纖維形態之參數 29 2-5 微波燒結簡介 34 2-5-1 微波燒結原理 35 2-5-2 微波燒結擴散理論 39 2-6 實驗目的與設計 44 第三章 實驗的量測與分析 59 3-1 密度之量測與分析(Density analysis) 60 3-2 X光繞射分析(X-ray diffraction analysis) 61 3-3 拉曼光譜儀(R aman Spectrometer)分析 62 3-4 交流阻抗頻譜(AC impedance spectroscopy)分析62 3-5 掃描式電子顯微鏡(SEM)表面影像分析 64 3-6 穿透式電子顯微鏡(TEM)分析 64 3-7 鐵弗曲線(Tafel polt)分析 64 3-8 循環伏安法(Cyclic Voltammetry)分析 65 第四章 氧化鈰基電解質共摻雜陽離子數量之電性研究 69 4-1 前言 69 4-2 實驗方法 71 4-3 結果分析與討論 73 4-3-1 Gd3+與Sr2+共摻雜於氧化鈰系統分析 73 4-3-2 共摻雜異價離子於氧化鈰之氧空缺半徑分析 78 4-3-3 共摻雜陽離子數量之氧化鈰基氧空缺分析 83 4-4 結論 88 第五章 靜電紡絲製備Ce0.78Gd0.2Sr0.02O2-δ纖維於爐溫燒結與微波燒結下纖維成長機制之研究 107 5-1 前言 107 5-2 實驗方法 109 5-3 結果分析與討論 110 5-3-1 高分子溶液濃度對Ce0.78Gd0.2Sr0.02O2-δ纖維的影響110 5-3-2 靜電紡絲加工參數對Ce0.78Gd0.2Sr0.02O2-δ纖維的影響113 5-3-3 不同燒結條件對Ce0.78Gd0.2Sr0.02O2-δ陶瓷纖維的影響117 5-4 結論 126 第六章 以LSCF-GSDC複合陰極做為IT-SOFC半電池可行性評估141 6-1 前言 141 6-2 實驗方法 143 6-3 結果分析與討論 146 6-3-1 LSCF-GSDC複合陰極之分析 146 6-3-2 複合陰極活性極化分析 152 6-3-3 複合陰極活性還原催化反應分析 159 6-4 結論 166 第七章 總結論與未來展望 186 7-1 總結論 186 7-2 未來展望 192 參考文獻 194

    1. W. R. Grove, “On voltaic series and the combination of gases by platinum,” Philos. Mag., Vol, 14, pp. 127-130 (1839).
    2. W. Nernst, “Über die Elektrolytische Leitung fester Körper bei sehr hohen Temperaturen,” Z. f. Elektrochemie, Vol. 4, pp. 641-643 (1899).
    3. W. Schottky and Wiss. Veröff, Siemens Werke, Vol. 14, pp. 1-19 (1935).
    4. E. Baur and H. Preis, “Über Brennstoff-Ketten mit Festleitern,” Z. electrochem., Vol. 43, pp. 727-732 (1937).
    5. S. C. Singha, “Solid oxide fuel cells for stationary, mobile, and military applications,” Solid State Ionics, Vol. 152-153, pp. 405-410 (2002).
    6. S. M. Haile, “Fuel cell materials and components,” Acta Materialia, Vol. 51, pp. 5981-6000 (2003).
    7. N. Q. Minh, “Ceramic fuel cells,” J. Am. Ceram. Soc., Vol. 76, pp. 563-588 (1993).
    8. T. Setoguchi, K. Eguchi and H. Arai, “Thin film fabrication of stabilized zirconia for solid oxide fuel cells,” Vacuum, Vol. 42, pp. 1061 (1991).
    9. T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki and M. Sano, “An intermediate-temperature solid oxide fuel cell providing higher performance with hydrocarbons than with hydrogen,” Electrochemical and Solid-State Letters, Vol. 5, pp. 242-244 (2002).
    10. H. lnaba and H. Tagawa, “Review ceria-based solid electrolytes,” Solid State Ionics, Vol. 83, pp. 1-16 (1996).
    11. O. Yamamoto, “Solid oxide fuel cells:fundamental aspects and prospects,” Electrochimica Acta, Vol. 45, pp. 2423-2435 (2000).
    12. F. Tietz, F. J. Dias, B. Dubiel and H.J. Penkalla, “Manufacturing of NiO/NiTiO3 porous substrates and the role of zirconia impurities during sintering,” Mater. Sci. Eng., Vol. 68, pp. 35-41 (1999).
    13. A. Ringuede, D. P. Fagg and J. R. Frade, “Electrochemical behavior and degradation of (Ni, M)/YSZ cermet electrodes (M=Co, Cu, Fe) for high temperature applications of solid electrolyte,” J. European Ceramic Society, Vol. 24, pp. 1355-1358 (2004).
    14. R. Doshi, V. L. Richards, J. D. Carter, X. Wang and M. Krumpelt, “Development of solid-oxide fuel cells that operate at 500°C,” J. Electrochem. Soc., Vol. 146, pp. 1273-1278 (1999).
    15. V. Dusastre and J. A. Kilner, “Optimisation of composite cathodes for intermediate temperature SOFC applications,” Solid State Ionics, Vol. 126, pp. 163-174 (1999).
    16. H. Konno, M. Tokita and R. Furuichi, “Formation of perovskite structure La1–xCaxCrO3 films with electrodeposition,” J. Electrochem. Soc., Vol. 137, pp. 361-362 (1990).
    17. I. Yasuda and T. Hikita, “Electrical conductivity and defect structure of calcium-doped lanthanum chromites,” J. Electrochem. Soc., Vol. 140, pp. 1699-1704 (1993).
    18. K. Huang, P. Y. Hou and J. B. Goodenough, “Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells,” Solid State Ionics, Vol. 129, pp. 237-250 (2000).
    19. P. Knanth and H. L. Tuller, “Solid-state ionics:roots, status, and future prospects,” J. Am. Ceram. Soc., Vol. 85, pp. 1654-1680 (2002).
    20. F. Boulc’h and E. Djurado, “Structural changes of rare-earth-doped, nanostructured zirconia solid solution,” Solid State Ionics, Vol. 157, pp. 335-340 (2003).
    21. M. Weller, F. Khelfaoui, M. Kilo, M. A. Taylor, C. Argirusis and G. Borchardt, “Defects and phase transitions in yttria-and scandia-doped zireonia,” Solid State Ionics, Vol. 175, pp. 329-333 (2004).
    22. M. Weller, R. Herzog, M. Kilo, G. Borchardt, S. Weber and S. Scherrer, “Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments,” Solid State Ionics, Vol. 175, pp. 409-413 (2004).
    23. S. J. Skinner and J. A. Kilner, “Oxygen ion conductors,” Materials Today, Vol. 6, pp. 30-37 (2003).
    24. W. H. Lee, W. A. Groen, H. Schreinemacher and D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres,” J. Electroceramics, Vol. 5, pp. 31-36 (2000).
    25. K. Choy, W. Bai, S. Charojrochkul and B. C. H. Steele, “The development of intermediate-temperature solid oxide fuel cells for the next millennium,” J. Power Sources, Vol. 71, pp. 361-369 (1998).
    26. T. Ishihara, H. Matsuda and Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor,” J. Am. Chem. Soc., Vol. 116, pp. 3801-3803 (1994).
    27. T. Ishihara, J. A. Kilner, M. Honda, N. Sakai, H. Yokokawa and Y. Takita, “Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides,” Solid State Ionics, Vol. 113-115, pp. 593-600 (1998).
    28. J. Molenda, K. swierczek and W. Zajac, “Functional materials for the IT-SOFC,” J. Power Sources, Vol. 173, pp. 657-670 (2007).
    29. T. Itoh, Y. Ichikawa, N. Hirata, T. Uno, M. Kubo and O. Yamamoto, “Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes,” Solid State Ionics, Vol. 150, pp. 337-345 (2002).
    30. P. Shuka, H. D. Wiemhöferb, U. Guthc, W. Göpeld and M. Greenblatta, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, Vol. 89, pp. 179-196 (1996).
    31. T. Takahashi, T. Esaka and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity,” J. Applied Electrochemistry, Vol. 7, pp. 303-308 (1977).
    32. M. Mogensen,N. M. Sammes and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, Vol. 129, pp. 63-94 (2000).
    33. T. Inoue, T. Setoguchi, K. Eguchi and H. Arai, “Study of a solid oxide fuel cell with a ceria-based solid electrolyte,” Solid State Ionics, Vol. 35, pp. 285-291 (1989).
    34. K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxide fuel cell,” J. Alloys and Compounds, Vol. 250, pp. 486-491 (1997).
    35. K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cell,” Solid State Ionics, Vol. 52, pp.165-172 (1992).
    36. G. A. Tompsett, N. M. Sammes and O. Yamamoto, “Ceria-yttria-stabilized zirconia composite ceramic system for application as low-temperature electrolytes,” J. American Ceramic Society, Vol. 80, pp. 3181-3186 (1997).
    37. N. Izu, T. Omata and S. Otsuka-Yao-Matsuo, “Oxygen release behaviour of Ce(1−x)ZrxO2 powders and appearance of Ce(8−4y)Zr4yO(14−δ) solid solution in the ZrO2-CeO2-CeO1.5 system,” J. Alloys. Compds., Vol. 270, pp. 107-114 (1998).
    38. D. J. M. Bevan and J. Kordis, “Mixed oxides of the type MO2 (fluorite)-M2O3-I oxygen dissociation pressures and phase relationships in the system CeO2-Ce2O3 at high temperatures,” J. Inorg. Nucl. Chem., Vol. 26, pp. 1509-1523 (1964).
    39. D. J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions,” J. Am. Ceram. Soc., Vol. 72, pp. 1415-1421 (1989).
    40. R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Cryst., B25, pp. 925-1048 (1969).
    41. M. Mogensen, T. Lindegaard and U. R. Hansen, “Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2,” J. Electrochem. Soc., Vol. 141, pp. 2122-2128 (1994).
    42. H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, “Electrical properties and microstructure in the system ceria-alkaline earth oxide,” J. Mater. Sci., Vol. 23, pp. 1036-1041 (1988).
    43. N. Trofimenko and H. Ullmann, “Transition metal doped lanthanum gallates,” Solid State Ionics, Vol. 118, pp. 215-227 (1999).
    44. V. V. Kharton, A. A. Yaremchenko, E. N. Naumovich and F. M. B. Marques, “Research on the electrochemistry of oxygen ion conductors in the former soviet union III HfO2-, CeO2 and ThO2-based oxides,” J. Solid State Electrochem., Vol. 4, pp. 243-266 (2000).
    45. H. Yahiro, K. Eguchi and H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, Vol. 36, pp. 71-75 (1989).
    46. H. Yahiro, Y. Baba, K. Eguchi and H. Arai, “High temperature fuel cell with ceria-yttria solid electrolyte,” J. Electochemical Society, Vol. 135, pp. 2077-2080 (1988).
    47. J. G. Li, T. Ikegami, Y. Mori and T. Wada, “Reactive Ce0.8RE0.2O1.9 (RE= La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization,” Chem. Mater., Vol. 13, pp. 2913-2920 (2001).
    48. Z. Tianshu, P. Hing, H. Huang and J. Kilner, “Ionic conductivity in the CeO2–Gd2O3 system (0.05 Gd/Ce 0.4) prepared by oxalate coprecipitation,” Solid State Ionics, Vol. 148, pp. 567-573 (2002).
    49. V. Butler, C. R. A. Catlow, B. E. F. Fender and J. H. Handing, “Dopant ion radius and ionic conductivity in cerium dioxide,” Solid State Ionics, Vol. 8, pp. 109-113 (1983).
    50. F. Y. Wang, S. Chen and S. Cheng, “Gd3+ and Sm3+ CO-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells,” Electrochemistry Communications, Vol. 6, pp. 743-746 (2004).
    51. H. Yoshida, T. Inagaki, K. Miura, M. Inaba and Z. Ogumi, “Density functional theory calculation on the effect of local structure of doped ceria on ionic conductivity,” Solid State Ionics, Vol. 160, pp. 109-116 (2003).
    52. H. Yoshida, H. Deguchi, K. Miura and M. Horiuchi, “Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement,” Solid State Ionics, Vol. 140, pp. 191-199 (2001).
    53. T. Mori, T. Ikegami and H. Yamamura, “Application of a crystallographic index for improvement of the electrolytic properties of the CeO2-Sm2O3 system,” J. Electrochem. Soc., Vol. 146, pp. 4380-4385 (1999).
    54. J. V. Herle, D. Seneviratne and A. J. McEvoy, “Lanthanide co-doping of solid electrolytes: AC conductivity behaviour,” J. Eur. Ceram. Soc., Vol. 19, pp. 837-841 (1999).
    55. H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori and H. Haneda, “Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ(M = Ca, Sr) system,” Electrochemistry, Vol. 68, pp. 455-459 (2000).
    56. S. Lubke and H. D. Wiemhofer, “Electronic conductivity of Gd-doped ceria with additional Pr-doping,” Solid State Ionics, Vol. 117, pp. 229-243 (1999).
    57. N. Kim, B. H. Kim and D. Lee, “Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte,” J. Power Sources, Vol. 90, pp. 139-143 (2000).
    58. W. Huang, P. Shuk and M. Greenblatt, “Propefties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolytes,” Solid State Ionics, Vol. 100, pp. 23-27 (1997).
    59. H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, “Oxygen ion conductivity of the ceia-samarium oxide system with fluorite structure,” J. applied Electrochemistry, Vol. 18, pp. 527-531 (1988).
    60. J. Kimpton, T. H. Randle and J. Dennab, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92(M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics, Vol. 149, pp. 89-98 (2002).
    61. C. Milliken, S. Guruswamy and A. Khandkar, “Evaluation of ceria electrolytes in solid oxide fuel cells electric power generation,” J. Electrochem. Soc., Vol. 146, pp. 872-882 (1999).
    62. B. C. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃,” Solid State Ionics, Vol. 129, pp. 95-110 (2000).
    63. A. Formhals, “Process and apparatus for preparing artificial threads,” US Patent Specification, 1975504 (1934).
    64. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechmology, Vol. 7, pp. 219-223 (1996).
    65. D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solution in electrospinning,” J. Applied Physics, Vol. 87, pp. 4531-4547 (2000).
    66. J. Doshi and D. H. Reneker, “Electrospinning process and application of electrospun fibers,” J. Electrostatics, Vol. 35, pp. 151-160 (1995).
    67. Z. M. Huang, Y. A. Zhang, M. Kotaki and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol. 63, pp. 2223-2253 (2003).
    68. Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge, “Electrospinning: A whipping fluid jet generates submicron polymer fibers,” Appl. Phys. Lett., Vol. 78, pp. 1149-1151 (2001).
    69. A. L. Yarin, S. Koombhongse and D. H. Renker, “Bending instability in electrospinning of nanofibers,” J. Appl. Phys., Vol. 89, pp. 3018-3026 (2001).
    70. Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge, “Experimental characterization of electrospinning: The electrically forced jet and instabilities,” Polymer, Vol. 42, pp. 9955-9967 (2001).
    71. A. Koski, K. Yim and S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning,” Materials Letters, Vol. 58, pp. 493-497 (2004).
    72. J. S. Kim and D. H. Reneker, “Polybenzimidazole nanofiber produced by electrospinning,” Polymer Eng. & Sci., Vol. 9, pp. 849-854 (1999).
    73. F. Vollrath and D. T. Edmonds, “Modulation of the mechanical properties of spider silk by coating with water,” Nature, Vol. 340, pp. 305-307 (1989).
    74. R. Jaeger, H. Schonherr and J. Vancso, “Chain packing in electrospun poly-(ethylene oxide) visualize d by atomic force microscopy,” Macromolecules, Vol. 29, pp. 7634-7636 (1996).
    75. R. Jaeger, M. Bergshoef, C. Batlle, H. Schonherr and J. Vancso, “Electrospinning of ultra-thin polymer fibers,” Macromolecular Symposium, Vol. 127, pp. 141-150 (1998).
    76. H. Fong, I. Chun and D. H. Renneker, “Beaded nanofibers formed during electrospinning,” Polymer, Vol. 40, pp. 4585-4592 (1999).
    77. S. L. Shenoy, W. D. Bates, H. L. Frisch and G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit,” Polymer, Vol. 46, pp. 3372-3384 (2005).
    78. C. Mit-uppatham, M. Nithitanakul and P. Supaphol, “Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter,” Macromolecular Chemistry and Physics, Vol. 205, pp. 2327-2338 (2004).
    79. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, “Effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, Vol. 42, pp. 261-272 (2001).
    80. M. Murata and H. Arai, “The interaction between polymer and surfactant: The effect of temperature and added salt on the interaction between polyvinylpyrrolidone and sodium dodecyl sulfate,” J. Colloid Interface Sci., Vol. 63, pp. 475-480 (1973).
    81. C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer, Vol. 40, pp. 7397-7407 (1999).
    82. K. J. Pawlowski, H. L. Belvin, D. L. Raney, J. Su, J. S. Harrison and E. J. Siochi, “Electrospinning of a micro-air vehicle wing skin,” Polymer, Vol. 44, pp. 1309-1314 (2003).
    83. M. M. Demir, I. Yilgor, E. Yilgor and B. Erman, “Electrospinning of polyurethane fibers,” Polymer, Vol. 43, pp. 3303-3309 (2002).
    84. A. A. Ashraf and M. A. EI-Hamid, “Electro-spinning optimization for precursor carbon nanofibers,” Comp. Part A:Appl. Sci. Manuf., Vol. 37 pp. 1681-1687 (2006).
    85. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim and Z. Ma, “An introduction to electrospinning and nanofibers,” in Introduction & Electrospinning Process, 1st Edition, World Scientific, Singapore, 2005, Chapter 1&3.
    86. D. M. Pozar, “Microwave engineering,” second edition, John Wiley and Sons. Inc., pp. 1-55 (1998).
    87. W. H. Sutton, “Microwave Processing of Ceramic materials,” Am. Ceram. Soc. Bull., Vol. 68, pp. 376-386 (1989).
    88. R. Wroe and A. T. Rowley, “Evidence for a non-thermal microwave effect in the sintering of partically stabilized zirconia,” J. Mater. Sci., Vol. 31, pp. 2019-2026 (1996).
    89. M. A. Janney and H. D. Kimrey, “Diffusion-controlled processes in microwave-fired oxide ceramics,” Mater. Res. Soc. Synp. Proc., Vol. 189, pp. 215-227 (1990).
    90. M. A. Janney, H. D. Kimrey, M. A. Schmidt and J. O. Kiggans, “Grain growth in microwave-Annealed Alumina,” J. Amer. Ceram. Soc., Vol. 74, pp. 1675-1681 (1991).
    91. M. A. Janney, H. D. Kimrey, W. R. Allen and J. O. Kiggans, “Enhanced diffusion in sapphire during microwave heating,” J. Materials Science, Vol. 32, pp. 1347-1355 (1997).
    92. S. A. Freeman, J. H. Booske and R. F. Cooper, “Microwave field enhancement of charge transport in sodium chloride,” Physical Review Letters, Vol. 74, pp. 2042-2045 (1995).
    93. Birnboin, “Method for producing recombinant immunoglobuline,” patent EP0438310.
    94. J. L. Lee, K. S. Hong and J. H. Chung, “Revisit to the origin of grain growth anomaly in yttria-doped barium titanate,” J. Am. Ceram. Soc., Vol. 84, pp. 1745-1749 (2001).
    95. Y. L. Tian, D. L Johnson and M. E. Brodwin, “Ultrafine microstructure of Al2O3 produced by microwave sintering,” in Ceramic Powder Science, II, Ceram. Trans., Vol. 1, pp. 925-932 (1988).
    96. A. Janney, M. L. Jackson and H. D. Kimery, “Microwave sintering of ZrO2-12mol% CeO2,” in microwaves: theory and application in materials processing II, Ceram. Trans., Vol. 36, pp. 101-108 (1993).
    97. J. Samuels and J. R. Brandon, “Effect of composition on the enhanced microwave sintering of alumina-based ceramic composites,” J. Mater. Sci., Vol. 27, pp. 3259-3265 (1992).
    98. J. Cheng, J. Qiu, J. Zhou and N. Ye, “Densification kinetics of alumina during microwave sintering,” in Microwave Processing of Materials III, Mater. Res. Soc. Symp. Proc., Vol. 269, pp. 323-328 (1992).
    99. J. H. Booske, R. F. Cooper and I. Dobson, “Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solides,” J. Mater. Res., Vol. 7, pp. 495-501 (1992).
    100. K. I. Rybakov and V. E. Semenov, “Possibility of plastic performation of an ionic crystal due to the nonthermal influence of a high-frequency electric field,” Phys. Rev. B, Vol. 49, pp. 64-68 (1994).
    101. S. B. Adler, “Limitations of charge-transfer models for mixed-conducting oxygen electrodes,” Solid State Ionics, Vol. 135, pp. 603-612 (2000).
    102. S. J. Hong and A. V. Virkar, “Lattice parameters and densities of rare-earth oxide doped ceria electrolytes,” J. Am. Ceram. Soc., Vol. 78, pp. 433-439 (1995).
    103. Y. Yamamura, S. Kawasaki and H. Sakai, “Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia,” Solid State Ionics, Vol. 126, pp. 181-189 (1999).
    104. T. H. Yeh and C. C. Chou, “Ionic conductivity investigation in samarium and strontium co-doped ceria system,” Phys. Scr., T129, pp. 303-307 (2007).
    105. A. Trovarelli, “Structural properties and nonstoichiometric behavior of CeO2,” Catalysis by Ceria and Related Materials, pp. 15-50 (2002).
    106. W. H. Flygare and R. A. Huggins, “Theory of ionic transport in crystallographic tunnels,” J. Phy. Chem. Solids, Vol. 34, pp. 1199-1204 (1973).
    107. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada and M. Dokiya, “Oxygen transport properties of La1-xCaxCrO3-δ as an interconnect material of a solid oxide fuel cell,” J. Electrochem. Soc., Vol. 147, pp. 3178-3182 (2000).
    108. J. R. McBride, K. C. Hass, B. D. Poindexter and W. H. Weber, “Raman and x-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb,” J. Appl. Phys. Vol. 76, pp. 2435-2441 (1994).
    109. F. Ye, T. Mori, D. R. Ou, J. Zou, G. Auchterlonie and J. Drennan, “Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria,” Solid State Ionics, Vol. 179, pp. 827-831 (2008).
    110. S. P. Jiang, “Issues on development of (La, Sr) MnO3 cathode for solid oxide fuel cells,” J. Power Sources, Vol. 124, pp. 390-402 (2003).
    111. T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T. Kawada and T. Kato, “Active sites imaging for oxygen reduction at the La0.9Sr0.1MnO3–x/yttria-stabilized zirconia interface by secondary-ion mass spectrometry,” J. Electrochem. Soc., Vol. 145, pp. 3196-3202 (1998).
    112. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba and T. Hashimpto, “Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3,” Solid State Ionics, Vol. 132, pp. 167-180 (2000).
    113. A. M. Azad, T. Matthews and J. Swary, “Processing and characterization of electrospun Y2O3-stabilized ZrO2(YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers,” Materials Science and Engineering, Vol. 123, pp. 252-258 (2005).
    114. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, Vol. 43, pp. 4403-4412 (2002).
    115. H. Liu and Y. L. Hsieh, “Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate,” J. Polymer Science: Part B: Polymer Physic, Vol. 40, pp. 2119-2129 (2001).
    116. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung and S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers,” Polymer, Vol. 44, pp. 4029-4034 (2003).
    117. S. Koombhongse, W. Liu and D. H. Reneker, “Flat polymer ribbons and other shapes by electrospinning,” J. Polymer Science Part B: Polymer Physics, Vol. 39, pp. 2598-2606 (2001).
    118. J. S. Lee, K. H. Choi, H. D. Ghim and S. S. Chun, “Role of molecular weight of atactic poly(vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning,” J. Applied Polymer Science, Vol. 93, pp. 1638-1646 (2004).
    119. S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers,” Macromolecules, Vol. 35, pp. 8456-8466 (2002).
    120. S. Zhao, X. Wu, L. Wang and Y. Huang, “Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions,” J. Applied Polymer Science, Vol. 91, pp. 242-246 (2004).
    121. D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Namo Letters, Vol. 3, pp. 555-560 (2003).
    122. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim and Z. Ma, “An introduction to electrospinning and nanofibers,” in Introduction & Electrospinning Process, 1st Edition, World Scientific, Singapore, 2005, Chapter 1&3.
    123. L. Li, P. Zhang, J. Liang and S. M. Guo, “Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing,” Ceramics International, Vol. 36, pp. 589-594 (2010).
    124. W. W. Mullins, “The effect of thermal grooving on grain boundary motion,” Acta Metallurgica, Vol. 6, pp. 414-427 (1958).
    125. X. D. Zhou, W. Huebner, I. Kosacki and H. U. Anderson, “Microstructure and grain-boundary effect on electrical properties of gadolinium-doped ceria,” J. Am. Ceram. Soc., Vol. 85, pp. 1757-1762 (2002).
    126. H. P. Ng and A. H. W. Ngan, “An in situ transmission electron microscope investigation into grain growth and ordering of sputter-deposited nanocrystalline Ni3Al thin films,” J. Materials Research, Vol. 17, pp. 2085-2094 (2002).
    127. B. B. Panigrahi, “Grain growth in ultrafine titanium powders during sintering,” J. Nanoparticle Research, Vol. 8, pp.627-633 (2006).
    128. H. D. Kimrey, J. O. Kiggans, M. A. Janney and R. L. Beatty, “Microwave sintering of zirconia-toughened alumina composites,” Ibid, pp. 243-255 (1990).
    129. F. Zhao, R. Peng and C. Xia, “LSC-based electrode with high durability for IT-SOFCs,” Fuel Cells Bulletin, Vol. 2008, pp. 12-16 (2008).
    130. Ch. Kostogloudis and Ch. Ftikos, “Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ–based perovskite oxides,” Solid State Ionics, Vol. 126, pp. 143-151 (1999).
    131. D. Mantzavinos, A. Hartley, I. S. Metcalfe and M. Sahibzada, “Oxygen stoichiometries in La1-xSrxCo1-yFeyO3-δperovskites at reduced oxygen partial pressures,” Solid State Ionics, Vol. 134, pp.103-109 (2000).
    132. S. P. Scott, D. Mantzavinos, A. Hartley, M. Sahibzada and I. S. Metcalfe, “Reactivity of LSCF perovskites,” Solid State Ionics, Vol. 152/ 153, pp. 777-781 (2002).
    133. L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 2. The system La1-xSrxCo0.2Fe0.8O3,” Solid State Ionics, Vol. 76, pp. 273-283 (1995).
    134. B. Kenney and K. Karan, “Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis,” Solid State Ionics, Vol. 178, pp. 297-306 (2007).
    135. J. Deseure, Y. Bultel, L. Dessemond and E. Siebert, “Theoretical optimisation of a SOFC composite cathode,” Electrochimica Acta, Vol. 50, pp. 2037-2046 (2005).
    136. D. Herbstritt, A. Weber and E. Ivers-Tiffee, “Modelling and DC-polarisation of a three dimensional electrode/electrolyte interface,” J. European Ceramic Society, Vol. 21, pp. 1813-1816 (2001).
    137. F. H. van Heuveln and H. J. M. Bouwmeester, “Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia,” J. Electrochem. Soc., Vol. 144, pp. 134-140 (1997).
    138. S. B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes,” Chemical Reviews, Vol. 104, pp. 4791-4843 (2004).
    139. A. C. Co, S. J. Xia and V. I. Birss, “A kinetic study of the oxygen reduction reaction at LaSrMnO3-YSZ composite electrodes,” J. Electrochemical Society, Vol. 152, pp. 570-576 (2005).
    140. Y. Xiangling, L. Liu, Z. Min, Y. Min, D. Yonglai and C. Mojie, “Scandium-doped La0.8Sr0.2MnO3.6 cathode materials for intermediate-temperature solid oxide fuel cells,” Chinese Journal of Catalysis, Vol. 30, pp. 95-103 (2009).

    QR CODE