簡易檢索 / 詳目顯示

研究生: 陳正劭
Cheng-Sao Chen
論文名稱: 鈦酸鋇X7R電容材料微觀結構與介電特性之研究
Microstructures and Dielectric Properties of X7R Type BaTiO3 Capacitor Materials
指導教授: 周振嘉
Chen-chia Chou
口試委員: 曾俊元
none
林諭男
I-nan Lin
段維新
none
郭東昊
none
黃鶯聲
none
曾安培
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 227
中文關鍵詞: 鈦酸鋇微波燒結微觀結構介電特性電子顯微鏡晶體動力學
外文關鍵詞: BaTiO3, microwave sintering, microstructures, dielectric properties, electron microscope, grain growth kinetics
相關次數: 點閱:339下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要使用不同粒徑(0.2μm與70nm)之鈦酸鋇(BaTiO3)粉末為起始粉體,摻雜氧化釔(Y2O3)與氧化鎂(MgO)做為施體與受體添加劑,並利用傳統燒結(CS)與微波燒結(MS)製備X7R電容材料。燒結後試片經量測密度與介電特性後,藉由X光繞射(XRD)分析及運用Rietveld精算法計算其晶格結構,並分析添加元素實際佔據晶格之位置;此外,利用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)進行試片微結構與微區成份之觀察,詳細探討製程參數、電性行為與微觀結構間之關聯性。最後,本研究針對奈米級BaTiO3電容材料在微波場下之緻密化行為進行分析,並計算比較MS與CS試片之晶體成長動力學。
    實驗結果顯示:添加Y2O3及MgO均有抑制BaTiO3晶格常數c/a比值及晶粒成長之效果。當Y2O3添加量超過0.6 at%時,Y3+會由A-site佔據轉變為A-site與B-site雙佔據。而Mg2+則只佔據BaTiO3之B-site位置。當BaTiO3(粒徑0.2μm)同時添加1.5 mol%Y2O3、2mol% MgO與3 mol%(Ba0.6Ca0.4)SiO3助燒結劑,經嚴密控制燒結條件可獲得適當混合“高應變”晶粒與“核-殼結構”晶粒之微結構,使試片呈現低電容變化率(ΔC/C)特性。另以“雙相結構(duplex-structured)法”製備之BaTiO3電容材料,則能有效降低其介電行為對組成成份與燒結溫度之敏感性,使材料ΔC/C -T曲線呈平坦化現象,符合X7R電性規範。
    此外,以微波燒結BaTiO3電容材料,除可在較低溫、短時間條件下,快速促進材料緻密化(達95%T.D.),並避免晶粒成長外,同時微波場對材料組成成份有選擇性加熱效果,能使之在較寬鬆的燒結條件下,獲得成份分佈不均衡之雙相結構組織,有效降低其電容變化率,符合X7R規範。經分析比較微波燒結及傳統燒結奈米級BaTiO3材料之晶體成長動力學,發現微波燒結晶體成長所需活化能為59.4 kJ/mol,約為傳統燒結96.0 kJ/mol的2/3。此說明微波加熱具有降低材料粒子間活化能、加速緻密化速率之效果,而此可歸因於微波燒結過程中局部高溫之液相造成晶界擴散活化能的降低所致。


    In this thesis, we systematically investigated the effect of processing parameters on the characteristics of X7R type capacitor materials, which are prepared by submicron or nano-powdered BaTiO3 materials co-doped with Y2O3/MgO species and incorporated with (Ba0.6Ca0.4)SiO3 sintering aid, using the conventional sintering (CS) and microwave sintering (MS) techniques. The microstructures of these materials were examined in detailed using transmission electron microscopy (TEM) to explore the formation mechanism of the core-shell and duplex-structured microstructures. We also correlated the materials microstructures with their dielectric properties based on these observations. In addition, the results obtained by CS process and MS process were compared to that of each other.
    It is observed that small capacitance variation, ΔC/C, for core-shell structured materials sintered at 1250oC for 3 h, can be achieved by mixing the core-shell structured grains and the high-strained ones. In contrast, for duplex-structured materials, the heavily doped constituents of the samples remained as fine grains with paraelectric phase, whereas the lightly doped constituents of the materials grew, resulting in a core-shell microstructures. The K-T behavior of the duplex-structured materials is less process dependent than that of the core-shell structured ones.
    BaTiO3 materials were also sintered by MS process. The samples can be densified efficiently such that the density for the materials achieves 95% of T.D., when sintered at 1225oC for only 10 min. It is observed that the desired flat K-T dielectric properties for the materials can be obtained in wide range of sintering temperature and soaking time. TEM examination reveals that the detailed microstructures are complicated and the composition distribution is very inhomogeneous, although the grains are uniformly small for all samples. The unique K-T properties of these materials are ascribed to the duplex structure of the samples, viz. fine paraelectric grains and large ferroelectric ones. That is, the small capacitance variation, ΔC/C, for BaTiO3 materials can also be achieved by randomly mixing the paraelectric grains with the ferroelectric ones, where core-shell microstructure is not really necessary.
    Microwave sintering accelerates a number of kinetic processes in the nano-sized BaTiO3 materials. Not only densification can occur at 100oC lower in a microwave furnace as compared with a conventional furnace, but also the rate of grain growth is greatly accelerated in the microwave case. The grain growth kinetics of these MS and CS samples were investigated in terms of the phenomenological kinetics expression: Gn-G0n = K0texp(-Q/RT). The apparent activation energy Qa is 59.4 kJ/mol and 96.0 kJ/mol for MS and CS samples, respectively. The result could be ascribed to the enormous microwave effect, preferentially and markedly acted on grain boundaries with amorphous phase materials, which resulted from dissolution of BCSO sintering aid and hence leads to lower the activation energy for grain boundary diffusion during microwave sintering period.

    中文摘要………….………………………...…………………………………I 英文摘要…………………………………………………………………….III 誌謝…………………………………………………….…..………………V 目錄………………………….….……...…………………..………...…….VII 表目錄…………………………………..………………..…...…..………..XII 圖目錄…………………………………….………………....…..………...XIII 第一章 緒論…………………...….………….….……………....………..….1 第二章 文獻回顧………………………….………….………….….……….5 2.1鈦酸鋇介電材料….……..………….…..……..………..…………….5 2.1.1鈦酸鋇晶體結構……………..………..…….………………………5 2.1.2鈦酸鋇介電特性……………...……...………….………..…………6 2.1.3添加劑對鈦酸鋇介電特性之影響…................................……...…..8 2.1.4其他影響鈦酸鋇介電特性之因素…….….……...………..………13 2.2電容器….……..…………..……….…….……..………....……………14 2.2.1電容器之定義與分類…….….……….……...........…………….…15 2.2.2陶瓷電容器之分類與應用……...……..……….………………….17 2.2.3電容元件的介電行為………………………….....………….…….18 2.3微波燒結…….…………..……………………….…………...….…….21 2.3.1微波燒結簡介.……………….…………………...………….…….21 2.3.2微波燒結原理……………………………………….......…………22 2.3.3微波與材料的作用………………………………..………....….…23 2.3.4微波燒結擴散理論………………….……….…………………….28 2.3.5影響微波燒結之其他因素…………………...……….….....……..35 第三章 添加Y2O3與MgO對鈦酸鋇結構之影響.………...………………55 3.1前言…………………………………...……………………....………..55 3.2實驗方法……………………………………………….……..………..58 3.3結果分析與討論…………………………..……….…………………..59 3.3.1微觀結構分析……………..…………..………..………...………..60 3.3.2晶體結構分析………..………...……..………..………......………61 3.3.3 Rietveld refinement結構分析…….……….......………..…….…65 3.4結論…………………………………………………………………….66 第四章 傳統燒結X7R型卑金屬電極電容材料………............………..…80 4.1前言……….………………………………………………...…….……80 4.2實驗方法……….…………………………………….…….…..………83 4.2.1“核-殼結構”製程………….………….…….……..…….…..….......83 4.2.2“雙相結構”製程………………………………………….......….....84 4.3結果分析與討論…………….…………..……….……………….……85 4.3.1“核-殼結構”試片…………………..…….…….……..…..…….....85 4.3.2“核-殼”結構與“高應變”結構形成機制………..…..……...………92 4.3.3“雙相結構”試片………..……….…………..……………………...97 4.4結論…………………………………………….…...………..……….103 第五章 微波燒結製備X7R型鈦酸鋇電容材料…………...….……....…121 5.1前言………………………………….…………..…………...……….121 5.2實驗方法…………………………………...………….……..……….123 5.3結果分析與討論………………………..…...…….………………….124 5.3.1緻密行為與晶相結構分析………...….……….……..…..…....…124 5.3.2介電特性分析……………….……..………….………………….126 5.3.3微結構分析…………………….…...…………….….....……..….127 5.4結論………………………………...………………..….………...…..132 第六章 微波燒結鈦酸鋇電容材料擴散動力學分析…...…………….….142 6.1前言……………………………………………...………...…….……142 6.2實驗方法……………………………..…………….…….…...………146 6.3結果分析與討論…………………….…..……….……………...……148 6.3.1燒結密度量測與SEM微結構觀察....………….………..…….…148 6.3.2電性量測分析..…………...………..….…….……..…….….……152 6.3.3晶相結構與TEM微結構分析……….………..….…….….……153 6.4結論…………………………….………...….……..…………………157 第七章 微波燒結鈦酸鋇電容材料擴散動力學分析…...………….…….171 7.1前言……………………………………...………………...…….……171 7.1.1固態燒結....……………………..……………….……..….…...…171 7.1.2燒結質量傳輸機制.………….………….….…….…..….….....…174 7.1.3微波燒結擴散動力學…….….….….….……..….……....….……174 7.2實驗方法…………………………..……………….…….…...………177 7.2.1實驗流程....………………………….………….………..….……177 7.2.2晶粒成長動力學..…….….……..…………………..…...…..……178 7.3結果分析與討論………………………...……….……………...……179 7.3.1微波燒結試片微觀結構...……….…………….………..…..……179 7.3.2晶粒異常成長現象..……………...….…….………..…...….……185 7.3.3傳統燒結試片微觀結構…….………………..….……....….……188 7.3.4微波燒結與傳統燒結擴散動力學….………..….……....….……192 7.4結論…………………………….…….…….……..……………..……195 第八章 總結論與未來展望………………………………..…......……….208 8.1總結論………………………...…………………………...…….……208 8.2未來展望………………………...………………….…….…..………209 參考文獻……..…………………..………………..…......……….….....….210 作者簡介

    1. H. Kishi, Y. Mizuno and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn, J. Appl. Phys., Vol. 42, pp. 1-15 (2003).
    2. J. Wilson, J. Arthur and T. Jaenecke, “Advancing of the State-of-the-Art in MLCC Fabrication,” Ceram. Ind., Vol. 141, No. 4, pp. 51-56 (1993).
    3. A. J. Moulson and J. M. Herbert, “Electroceramics,” Academic Press, John Wiley & Sons (2003).
    4. 陳三元, “積層陶瓷電容器粉體製作,” 工業材料, Vol. 108, pp. 60-71 (1995).
    5. W. H. Sutton, “Microwave Processing of Ceramic Materials,” Am. Ceram. Soc., Bull., Vol. 68 [2], pp. 376-386 (1989).
    6. M. A. Janney and H. D. Kimrey, “Diffusion-Controlled Processes in Microwave–Fired Oxide Ceramic,” Mater. Res. Symp. Proc., Vol. 189, pp. 215-227 (1990).
    7. B. Jaffe, W, R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and New York (1971).
    8. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    9. H. F. Kay, and P. Vousden, “Symmetry Change in Barium Titanate at Low Temperature and Their Relation to Its Ferroelectricity Properties,” Phil. Mag., Vol. 40, pp. 1019-1040 (1949).
    10. G. Arlt and P. Sasko, “Domain Configuration and Equilibrium Size of Domain in BaTiO3 Ceramics,” J. Appl. Phys., Vol. 51, pp. 4956-4960 (1980).
    11. M. Tanaka and G. Honjo, “Electron Optical Studies of Barium Titanate Single Crystal Film,” J. Phys. Soc. Jap., Vol. 19, pp. 954-970 (1964).
    12. T. Mitsui, I. Tatsuzaki and E. Nakamura, “Introduction to Physics of Ferroelectrics,” Gorden and Breach, New York (1976).
    13. F. Jona and G. Shirane, “Ferroelectric Crystals,” Pergamon Press, New York (1962).
    14. D. Hennings, “Barium Titanate Based Ceramics Materials for Dielectric Use,” Int. J. High Tech. Ceram., Vol. 3, pp. 91-111 (1987).
    15. D. Hennings and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc., Vol. 67, pp. 249-254 (1984).
    16. H. Saito, H. Chazono, H. Kishi and N. Yamaoka, “X7R Multilayer Ceramic Capacitors with Nickel Electrodes,” Jpn. J. Appl. Phys., Vol. 30, 9B, pp. 2307-2310 (1991).
    17. Y. Park and H. G. Kim, “Dielectric Temperature Characteristics of Cerium-Modified Barium Titanate Ceramics with Core-Shell Grain Structure,” J. Am. Ceram. Soc., Vol. 80, pp. 106-112 (1997).
    18. W. C. Yang, C. T. Hu and I. N. Lin, “Effect of Y2O3/MgO Co-Doping on the Electrical Properties of Base-Metal-Electroded BaTiO3 Materials,” J. Euro. Ceram. Soc., Vol. 24, pp. 1479-1483 (2003).
    19. H. M. Chan, M. P. Harmer and D. M. Smyth, “Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., Vol. 69, pp. 507-510 (1986).
    20. J. Daniels, K. H. Hardtl, D. Hennings and R. Wernicke, “Defect Chemistry and Electrical Conductivity of Doped Barium Titanate Ceramics,” Philips Research Report, Vol. 31, pp. 487-559 (1976).
    21. K. Takada, E. Chang and D. M. Smyth, “Rare-Earth Additions to BaTiO3,” in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by John B. Blum and W. Roger Cannon. Proceeding of the Electronics Division Fall Meeting 1985, American Ceramic Society, Westerville, OH, pp.147-52 (1986).
    22. I. Bunget and M. Popescu, “Physics of Solid Dielectrics,” Elsevier Ansterdan, Oxford-New York-Tokyo, pp.282 (1984).
    23. J. N. Lin and T. B. Wu, “Effects of Isovalent Substitutions on Lattice Softening and Transition Character of BaTiO3 Solid Solutions,” J. Appl. Phys., Vol. 68, No. 3, pp. 985-993 (1990).
    24. J. M. Osepchuk, “A History of Microwave Heating Applications,” IEEE Trans. Microwave Theory & Tech., MTT-32, Vol. 9, pp. 1200-1224 (1984).
    25. M. L. Levinson, U S Pat. No.3585258, 1971/06/15, applied for 1965/10/19.
    26. W. R. Tinga and W. A. G. Voss, “Microwave Power Engineering,” Academic Press, New York (1968).
    27. A. J. Berteand and J. C. Badet, “High Temperature Microwave Heating in Refractory Materials,” J. Microwave Power, Vol. 11, pp. 315-320 (1976).
    28. Z. Xie, J. Yang and Y. Huang, “Densification and Grain Growth of Alumina by Microwave Processing,” Materials Letters, Vol. 37, pp. 215-220 (1998).
    29. R. D. Blae, T. T. Meek, “Microwave Processed Composite Materials,” J. Mater. Sci. Lett, Vol. 5, 1097-1098 (1986).
    30. J. D. Katz, R. D. Blake and J. J. Petrovic, “Microwave Sintering of Alumina-Silicon Carbide Composites at 2.45 and 60 GHz,” Ceram. Eng. Sci. Proc. Vol. 9, No. 7-8, pp. 725-734 (1988).
    31. A. Goldstein, N. Travitzky, A. Singurindy and M. Kravchik, “Direct Microwave Sintering of Yttrium-stabilized Zirconia at 2.45 GHz,” J. Euro. Ceram. Soc., Vol. 19, pp. 2067-2072 (1999).
    32. M. C. Valecillos, M. Hirota, M. E. Brito, K. Hirao and M. Toriyama, “Microstructure and Mechanical Properties of Microwave Sintered Silicon Nitride,” J. Japn. Ceram. Soc., Vol. 106, No. 12, pp. 1162-1166 (1998).
    33. J. J. Thomas, R. J. Christensen, D. L. Johnson, and H. M. Jennings, “Nonisothermal Microwave Processing of Reaction-Bonded Silicon Nitride,” J. Am. Ceram. Soc., Vol. 76, No. 5, 1384-1386 (1993).
    34. M. Aliouat, L. Mazo, G. Desgardin and B. Raveau, “Microwave Sintering of the high T. Superconductor YBa2Cu3O7-δ,” Mater. Chem. Phys. Vol. 26, pp. 109-115 (1990).
    35. K. G. K. Warrier, H. K. Vama, T. V. Mani, and A. D. Damodaran, “Rapid Method for the Preparation of 123 Superconductor Using Microwaves,” J. Am. Ceram. Soc., Vol. 75, No. 7, 1990-1992 (1992).
    36. A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carnel, J. Rodgers and B. Levush, “Comparative Study of Microwave Sintering of Zinc Oxide at 2.45, 30 and 83 GHz,” J. Am. Ceram. Soc., Vol. 81, No. 6, pp. 1493-1501 (1998).
    37. C. S. Chen, C. T. Kuo and I-Nan Lin, “Electrical Properties of Microwave Sintered ZnO Varistors,” J. Jpn. Appl. Phys., Vol. 38 pp. 5500-5504 (1999).
    38. J. A. Eastman, K. E. Sickafus, J. D. Katz, S. G. Boeke, R. D. Blake, C. R. Evans, R. B. Schwarz, and Y. X. Liao, “Microwave sintering of Nanocrystalline TiO2,” Ibid, 173-178 (1990).
    39. R. J. Lauf, C. Hamby, C. E.Holcombe, and W. F. Vierow, “Microwave Processing of Tantalum Capacitor Anodes,” in Microwave Processing of Materials III, Mater. Res. Soc. Symp, Proc., Vol. 269, pp. 2178-2222 (1992).
    40. H. Fukushima, T. Noritake and H. Hasegawa, “Microwave Sintering of Multilayer Ceramics Containing Capacitor,” J. Ceram. Soc. Japan, Vol. 108, No. 2, pp. 132-137 (2000).
    41. R. J. Lauf, C. E.Holcombe, and C. Hamby, “Microwave Sintering of Multilayer Ceramic Capacitors,” Ibid, 223-229 (1992).
    42. H. Fukushima, H. Mori, T. Hatanaka and M. Matsui, “Properties and Microstructure of PZT Ceramic Sintered by Microwave,” J. Ceram. Soc. Japan, Vol. 103, No. 10, pp. 1011-1016 (1995).
    43. A. Goldsten and M. Kravchik, “Sintering of PZT Powders in MW Furnace at 2.45 GHz,” J. Eur. Ceram. Soc., Vol. 19, pp. 989-992 (1999).
    44. F. Selmi, F. Guerin, X. P. Yu, V. K. Varadan, V. V. Varadan, and S. Komarneni, “Microwave Calcination and sintering of Barium Strontium Titanate,” Mater. Lett., Vol. 12, pp. 424-428 (1992).
    45. J. Cheng, Y. Fang, D. K. Agrawal, and R. Roy, “Microwave Synthesis of Lead-Barium Titanate,” in Microwave Processing of Materials IV, Mater Res. Symp. Proc., Vol. 347, pp. 513-518 (1994).
    46. T. T. Meek, C. E. Holcombe, N. Dykes, “Microwave Sinterng of some Oxide Materials Using Sintering Aids,” J. Mater. Sci. Lett., Vol. 6, pp. 1060-1062 (1987).
    47. C. E. Holcombe, N. L. Dykes, “Importance of “Casketing” for Microwave Sintering of Materials,” J. Mater. Sci. Lett., Vol. 9, pp. 425-428 (1990).
    48. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Nature, Vol. 399, No. 17 June, pp. 668-670 (1999).
    49. R. M. Anklekar, D. K. Agrawal and R. Roy, “Microwave Sintering and Mechanical Properties of PM Copper Steel,” Powder Metallurgy, Vol. 44, No. 4, pp. 355-362 (2001).
    50. Robert E. Collin, “Foundations for Microwave Engineering,” McGraw-Hill, New York, 2nd ed., pp. 450-476 (1992).
    51. E. Hund, “Microwave Communications-Components and Circuits,” McGraw-Hill, Chap. 2 (1989).
    52. D. Michael, P. Mingos, and David R. Baghurst, “Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chem. Soc. Rev., Vol. 20, pp. 1-47 (1991).
    53. B. Meng, J. Booske, R. Cooper, and S. Freeman, “Microwave Absorption in NaCl Crystals with Various Controlled Defect Conditions,” Mat. Res. Soc. Symp. Proc., Vol. 347, pp. 467-472 (1994).
    54. D. L. Johnson, “Microwave Heating of Grain Boundaries in Ceramics,” J. Am. Ceram., Soc., Vol. 74, No. 4, pp. 849-850 (1991).
    55. H. D. Kimrey, J. O. Kiggans, M. A. Janney and R. L. Beatty, “Microwave Sintering of Zirconia-Toughened Alumina Composites,” Ibid, pp. 243-255 (1990).
    56. M. A. Janney and H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” Ceram. Trans., Vol. 1 (II B), 919-924 (1998).
    57. M. A. Janney, H. D. Kimrey, M. A. Schmidet and J. O. Kiggans, “Grain Growth in Microwave-Annealed Alumina,” J.Am. Ceram. Soc., Vol. 74, No. 4, pp. 1675-1681 (1991).
    58. M. A. Janney, C. L. Calhoun, and H. D. Kimery, “Microwave Sintering of Zirconia-8mol% Yttria,” in Microwave: Theory and Application in Materials Processing, Ceram. Trans., Vol. 21, pp. 311-318 (1991).
    59. M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8mol% Yttria,” J. Am. Ceram. Soc., Vol. 75, No. 2, pp.341-346 (1992).
    60. M. A. Janney, H. D. Kimrey, nd J. O. Kiggans, “Microwave Processing of Ceramics, Guidelines Used at the Oak Ridge National Laboratory,” in Microwave Processing of Material III, Mater. Res. Soc. Symp. Proc., Vol. 269, pp. 173-185 (1992).
    61. M. A. Janney, M. L. Jackson, and H. D. Kimery, “Microwave Sintering of ZrO2-12mol% CeO2,” in Microwaves: Theory and Application in Materials Processing II, Ceram. Trans., Vol. 36, pp. 101-108 (1993).
    62. Y. V. Bykov, A. F. L. Goldenberg, and V. A. Flyagin, “The Possibilities of Material Processing by Intense Millimeter-wave Radiation,” in Microwave Processing of Materials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 41-42 (1990).
    63. Y. L. Tian and D. L Johnson, M. E. Brodwin, “Ultrafine Microstructure of Al2O3 Produced by Microwave Sintering,” in Ceramic Powder Science, II, Ceram. Trans., Vol. 1 [II B], 925-932 (1988).
    64. T. N. Tiegs, J. O. Kiggans, Jr., and H. D. Kimrey. Jr., “Microwave Processing of Silicon Nitride,” in Microwave Processing of Miaterials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 267-272(1990).
    65. J. Samuels, J. R. Brandon, “Effect of Composition on the Enhanced Microwave Sintering of Alumina-based Ceramic Composites,” J. Mater. Sci., Vol. 27, pp. 3259-3265 (1992).
    66. J. Cheng, J. Qiu, J. Zhou and N. Ye, “Densification Kinetics of Alumina during Microwave Sintering,” in Microwave Processing of Materials III, Mater. Res. Soc. Symp. Proc., Vol. 269, pp. 323-328 (1992).
    67. J. D. Katz and R. D. Blake, V. M. Kenkre, “Microwave Enhanced Diffusion in Materials: Theory and Application in Materials Processing,” Ceram. Trans., Vol. 21, pp. 95-105 (1991).
    68. J. H. Booske, R. F. Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” J. Mater. Res., Vol. 7, No. 2, pp. 495-501 (1992).
    69. J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” in Microwaves: Theory and Application Materials Processing, Ceram. Trans., Vol. 32, pp. 285-192 (1991).
    70. K. I. Rybakov and V. E. Semenov, “Possibility of Plastic Performation of an Ionic Crystal due to the Nonthermal Influence of a High-Frequency Electric Field,” Phys. Rev. B, Vol. 49, No. 1, pp. 64-68 (1994).
    71. K. I. Rybakov and V. E. Semenov, “A Non-thermal Vacancy-Drift Mechanism of Plastic Deformation of Grains in Ceramics during Microwave Sintering,” in Microwave Processing of Materials IV, Mater. Res. Soc. Symp., Vol. 347, pp. 661-66 (1994).
    72. R. E. Newham, S. J. Jang, M. Xu and F. Jones, “Fundamental Interaction Mechanizms between Microwave and Matter,” Ceram. Trans., Vol. 21, pp. 51-67 (1991).
    73. T. T. Meek, “Proposed Model for the Sintering of a Dielectric in a Microwave Field,” J. Mater, Sci. Lett., Vol. 6, pp. 638-640 (1987).
    74. V. K. Varadan, Y. Ma, A. Lakhtakia and V. V. Varadan, “Microwave Sintering of Ceramics,” in Microwave Processing of Materials I, Mater. Res. Soc. Symp, Proc., Vol. 124, pp. 45-57 (1988).
    75. V. M. Kenkre, L. Skala, M. W. Weiser and J. D. Katz, “Theory of Microwave Effects on Atomic Diffusion in Sintering: Basic Consideration of the Phenomenon of Thermal Runaway,” in Microwave Processing of Materials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 179-184 (1990).
    76. L. Skala, V. M. Kenkre, M. W. Weiser, and J. D. Katz, “Estimates for diffusion Barriers and Atomic Potentials in MgO: CNDO/2 Calculations for the Study of Microwave Effects in sintering,” Ibid, pp. 303-308 (1990).
    77. V. M. Kenkre, “Theory of Microwave Interactions with Ceramic Materials,” Ceram. Trans., Vol. 21, pp. 69-80 (1991).
    78. V. M. Kenkre, L. Skala, M. W. Weiser and J. D. Katz “Theory of Microwave Interactions in Ceramic Materials: the Phenomenon of Thermal Runaway,” J. Mater Sci., Vol. 26, pp. 2483-2489 (1991).
    79. V. M. Kenkre, M. Kus, and J. D. Katz, “Explanation of the Barrier Depression Effect in Ceramic Undergoing Microwave Heating,” Phys. Rev., B, Vol. 46, No. 21, 1825-1831 (1992).
    80. S. L. McGill, J. W. Walkiewing, and G. A. Smyes, “The Effects of Power Level on the Microwave Heating of Selected Chemicals and Minerals,” in Microwave Processing of Materials, Mater. Res. Soc. Symp. Proc., Vol. 124, 247-252 (1988).
    81. C. E. Holcombe and N. L. Dykes, “Importance of Casketing for Microwave Sintering of Materials,” J. Mater. Sci. Lett., Vol. 9, pp. 425-428 (1990).
    82. C. E. Holcombe and N. L. Dykes, “Microwave Sintering of Titanium Diboride,” J. Mater. Sci., Vol. 26, pp. 3730-3738 (1991).
    83. C. S. Chen, C. C. Chou, W. C. Yang, C. T. Hu and I. N. Lin, “Transmission Electron Microscopic Microstructure of Base-Metal-Electroded BaTiO3 Capacitor Materials with Duplex Structures,” Jpn. J. Appl. Phys., Vol. 43, pp. 226-231 (2004).
    84. N. H. Chan and D. M. Smyth, “Defect Chenistry in Donor-Doped BaTiO3,” J. Am. Ceram. Soc., Vol. 67, pp. 285-288 (1984).
    85. K Takada, E. Chang and D. M. Smyth, “Rare-Earth Additions to BaTiO3,” Adv. Ceram., Vol. 19, pp. 147-152 (1987).
    86. L. A. Xue, Y. Chen and R. J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3,” Mater, Sci. Eng., Vol. B1, pp. 193-201 (1988).
    87. B. Desu and D. A. Payne, “Interfacial Segregation in Perovskites: III, Microstructure and Electrical Properties,” J. Am. Ceram. Soc., Vol. 73, pp. 3407-3415 (1990).
    88. H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato and T. Okuda, “Study of Occupational Sites and Dielectric Properties of Ho-Mg and Ho-Mn substituted BaTiO3,” Jpn. J. Appl. Phys., Vol. 39, pp. 5533-5537 (2000).
    89. H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato and T. Okuda, “Occupational Sites and Dielectric Properties of Rare-Earth and Mn Substituted BaTiO3,” J. Europ. Ceram. Soc., Vol. 21, pp. 1643-1647 (2001).
    90. F. D. Morrison, D. C. Sinclair and A. R. West, “Doping Mechanisms and Electrical Properties of La-doped BaTiO3 Ceramics,” Int. J. Inorg. Mater., Vol. 3, pp. 1205-1210 (2001).
    91. J. L. Lee, K. S. Hong and J. H. Chung, “Revisit to the Origin of Grain Growth Anomaly in Yttria-Doped Barium Titanate,” J. Am. Ceram. Soc., Vol. 84, pp. 1745-1749 (2001).
    92. M. H. Lin and H. Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3,” Mater. Sci. Eng, Vol. A335, pp. 101-108 (2002).
    93. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi and T. Okuda, J. Euro. Ceram. Soc., Vol. 19, pp. 1043 (1999).
    94. M. T. Buscaglia, V. Buscaglia, M. S. Viviani and P. Nanni, “Atomistic Simulation of Dopannt Incorporation in Barium Titanate,” J. Am. Ceram. Soc., Vol. 84, pp. 376-384 (2001).
    95. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides,” Acta Crystallogr., Vol. A32, pp. 751 (1976).
    96. Y. Nakano, A. Sato, and T. Nomura, “Microstructure and Related Phenomena of Multilayer Ceramic Capacitors with Ni Electrodes”, Dielec. Ceram., Vol. 32, pp. 119-128 (1993).
    97. H. Kishi, N.Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato and T. Okuda, “Effect of Occupational Sites of Rare-Earth Elements on the Microstructure in BaTiO3,” Jpn. J. Appl. Phys., Vol. 38, pp. 5452-5456 (1999).
    98. A. C. Larson and R. B. Von Dreele, General Structure Analysis System. Lansce, MS-H805, Los Alamos National Laboratory (1985).
    99. J. Z. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho and J. L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics,” J. Am. Ceram. Soc., Vol. 82, No. 5, pp. 1345-48 (1999).
    100. T. Nagai, K. Iijima, H. J. Hwang, M. Sando, T. Sekino and K. Niihara, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” J. Am. Ceram. Soc., Vol. 83, pp. 107 (2000).
    101. Y. Sakabe, T. Takagi and K. Wakino, “Dielectric Materials for Base-Metal Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., Vol. 69, pp. 103-115 (1986).
    102. S. Sato, Y. Nakano and A. Sato, “Effect of Y-Doping on Resistance Degradation of Multilayer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test,” Jpn. J. Appl. Phys., Vol. 9B, pp. 6016-6020 (1996).
    103. H. Shizuno, S. Kusumi and H. Saito, “Properties of Y5V Multilayer Ceramic Capacitors with Ni Electrodes,” Jpn. J. Appl. Phys., Vol. 9B, pp. 4380-4383 (1993).
    104. Y. Nakano, A. Sato and T. Nomura, “Microstructure and Related Phenomena of Multilayer Ceramic Capacitors with Ni Electrodes,” Dielec. Ceram., Vol. 32, pp. 119-128 (1993).
    105. J. Yamamatsu, N. Kawano and T. Arashi, “Reliability of Multilayer Ceramic Capacitors with Ni Electrodes,” J. Power Sources, Vol. 60, pp. 199-203 (1996).
    106. C. J. Peng and H. Y. Lu, “Compensation Effect in Semiconducting Barium Titanate,” J. Am. Ceram. Soc., Vol. 71, pp. C44-C46 (1988).
    107. M. Drodenik, “Oxygen Partial Pressure and Grain Growth in Donor-Doped BaTiO3,” J. Am. Ceram. Soc., Vol. 70, pp. 311-314 (1987).
    108. M. Kahn, “Influence of Grain Growth on Dielectric Properties of Nb-Doped BaTiO3,” J. Am. Ceram. Soc., Vol. 54, pp. 455-457 (1971).
    109. S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama and T. Nomura, “Degradation of Multilayer Ceramic Capacitors with Nickel Electrodes,” J. Am. Ceram. Soc.,, Vol. 74, pp. 2739-2746 (1991).
    110. I. Burn, “Ceramic Disk Capacitor with Base-Metal Electrode,” Ceram. Bulletin, Vol. 57, pp. 600-604 (1978).
    111. W. C. Yang, C. T. Hu and I. N. Lin, “Effect of Y2O3 Doping on the Electrical Properties of Base-Metal-Electroded Capacitor Materials,” Ferroelectrics, Vol. 270, pp. 1321-1326 (2002).
    112. T. F. Lin, C. T. Hu and I. N. Lin, “Influence of CaO Addition on the Electrical Properties of BaTiO3 Ceramics,” J. Appl. Phys., Vol. 67, pp. 1042-1047 (1990).
    113. Y. Nakano, H. Shoji, and H. Matsushita, “Effects of Stoichiometry and Ca-Doping on Electrical Properties of BaTiO3 Ceramics Sintered in Reducing Atmospheres,” J. Mater. Synth. Processing, Vol. 6, No 4, pp.291-297 (1998).
    114. Y. Sakabe, “Dielectric Materials for Base-Metal Multilayer Ceramic Capacitors”, Ceram. Bulletin, Vol. 66, No 9, pp.1338-1341 (1987).
    115. N. M. Molokhia, M. A. A. Issa and S. A. Nasser, “Dielectric and X-Ray Diffraction Studies of Barium Titanate Doped with Ytterbium,” J. Am. Ceram. Soc., Vol. 67, pp. 289-291 (1984).
    116. Y. Sakabe, Y. Hamaji, and T. Nishiyama, “New Barium Titanate Based Material for MLCCs with Ni Electrodes,” Ferroelectrics, Vol. 133, pp. 133-138 (1992).
    117. X. Liu, S. C. Cheng and G. A. Randall, “The Core-Shell Structure in Ultrafine X7R Dielectric Ceramics,” J. Korn. Phys. Soc., Vol. 32, pp. S312-S315 (1998).
    118. S. F. Wang, “Dielectric Properties of Fine-Grained Barium Titanate Based X7R Materials,” J. Am. Ceram. Soc., Vol. 82, pp. 2677-2681 (1999).
    119. S. Sato, Y. Fujikawa, A. Nagai, Y. Terada and T. Nomura, “Effect of Rare-Earth Doping on the Temperature-Capacitance Characteristics for MLCCs with Ni Electrodes,” CARTS-EUROPE 2000, pp. 315-318 (2000).
    120. H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato and T. Okuda, “Effect of Occupational Sites of Rare-Earth Elements on the Microstructure in BaTiO3,” Jpn. J. Appl. Phys., Vol. 38, pp. 5452-5456 (1999).
    121. H. Kishi, N. Kohzu, H. Ohsato and T. Okuda, “Effect of Occupational Sites of Rare-Earth Elements on the Curie Point in BaTiO3,” IEEE Conference Proceeding, pp. 114-118 (2002).
    122. Y. Mizuno, Y. Okino, N. Kohzu, H. Chazono and H. Kishi, “Influence of Microstructure Evolution on Electrical Properties of Multilayer Capacitor with Ni Electrodes,” Jpn. J. Appl. Phys., Vol. 37, pp. 5227-5231 (1998).
    123. M. I. Mendelson, “Average Grain Size in Polycrystalline Ceramic,” J. Am. Ceram. Soc., Vol.52, pp. 443-446 (1969).
    124. R. M. German, “Sintering Theory and Practice,” John Wiley & Sons, Inc. (1996).
    125. M. R. Leonard and A. Safari. “Crystallite and Grain Size Effects in BaTiO3,” IEEE, Vol. 86, pp. 1003-1005 (1996).
    126. M. Kahn, “Preparation of Small-Grained and Large-Grained Ceramics from Nb-Doped BaTiO3,” J. Am. Ceram. Soc., Vol. 54, pp. 452-454 (1971).
    127. T. R. Armstrong, L. E. Morgens, A. K. Maurice and R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Ceram. Soc., Vol. 72, pp. 605-611 (1989).
    128. M. H. Lin and H. Y. Lu, “Densification Retardation in the Sintering of LaO-Doped Barium Titanate Ceramic,” Mate. Sci. and Engering, A323, pp. 167-176 (2002).
    129. A. C. Caballero, J. F. Fernandes, G. Moure, P. Duran and Y. M Chiang, “Grain Growth Control and Dopant Distribution in ZnO-Doped BaTiO3,” J. Am. Ceram. Soc, Vol. 81, No 4, pp. 939-944 (1998).
    130. D. B. Williams, “Transmission Electron Microscopy,” Plenum Press, New York and London, pp. 444 (1975).
    131. S. Y. Chung, D. Y. Yoon, and S. J. Kang, “Effects of Donor Concentration and Oxygen Partial Pressure on the Interface Morphology and Grain Growth Behavior in BaTiO3,” Acta Mater., Vol. 51, No 13, pp. 3361-71 (2002).
    132. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa and J. Moori, “Defect Structure and Oxygen Diffusion in Undoped and La-Doped Polycrystalline Barium Titanate,” J. Chem. Phys., Vol. 73, No 9, pp. 4641-4645 (1980).
    133. M. H. Lin and H. Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3,” Mater. Sci. and Engering, A335, pp. 101-108 (2002).
    134. Y. Enomoto and A. Yamaji, “Preparation of Uniformly Small Grained BaTiO3,” Ceram. Bull., Vol. 60, No 5, pp. 566-570 (1981).
    135. Y. Park and S. A. Song, “Effect of Grain Size and External Stress on Dielectric Temperature Characteristics of Dysprosium Modified Barium Titanate,” Mater. Sci. and Engering, B47, pp. 28-32 (1997).
    136. A. Yamaji, Y. Enomoto, K. Kinoshita and T. Murakami, “Preparation, Characterization and Properties of Dy-Doped Small-Grained BaTiO3 Ceramics,” J. Am. Ceram. Soc., Vol. 60, pp. 97-101 (1977).
    137. A. Goldstein and M. Kravchik, “Sintering of PZT Powders in MW Furnace at 2.45 GHz,” J. Euro. Ceram. Soc., Vol.19, pp. 989-992 (1999).
    138. 張宏宜, “微波燒結SrTiO3, BaTiO3 and PbTiO3系列電子陶瓷之研究,” 清華大學博士論文, 1995年5月。
    139. P. H. Chen, C. C. Chou, H. F. Cheng and I. N. Lin, “Microstructural Characteristics and Nonequilibrium Core-shell Phase in (PbxSr1-x)TiO3 Materials and Their Electrical Properties,” Ferroelectrics, Vol. 241, pp.1669-1673 (2000).
    140. A. P. Hynes, “Sintering and Characterization of Nanophase Zinc Oxide,” J. Am. Ceram. Soc., Vol. 85, pp. 1981-1986 (2002).
    141. R. Waser, T. Baiatu, and K. H. Hardtl, “DC Electrical Degradation of Perovskite-Type titantates,” J. Am. Ceram. Soc., Vol. 73, No. 6, pp. 1645-53 (1990).
    142. W. H. Lee, T. Y. Tseng, and D. F. K. Hennings, “Effects of Calcination Temperature and A/B Ratio on the Dielectric Properties of (Ba,Ca)(Ti,Zr,Mn)O3 for Multilayer Ceramic Capacitors with Nickel Electrodes,” J. Am. Ceram. Soc., Vol. 83, No. 6, pp. 1402-1406 (2000)
    143. L. C. Hoffman, “Coprecipitated Noble Metal Powders and Their Use in Multilayer Capacitors,” in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by John B. Blum and W. Roger Cannon. Proceeding of the Electronics Division Fall Meeting 1985, American Ceramic Society, Westerville, OH, pp.71-75 (1986).
    144. V. P. Pavlovic, M. V. Nikolic, Z. Nikolic, G. Brankovic, L. J. Zivkovic, V. B. Pavlovic and M. M. Ristic, “Microstructural Evolution and Electric Properties of Mechanically Activated BaTiO3 Ceramics,” J. Euro. Ceram. Soc., Vol. 27, pp. 575-579 (2007).
    145. Y. M. Chiang, D. Birnie III and W. D. Kingery, “Physical Ceramics,” John Wiley & Sons, New York, pp.404 (1997).
    146. C. S. Chen, C. C. Chou and I. N. Lin, “Microstructure of X7R Type Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives,” J. Electroceramics, Vol. 13, pp. 567-571 (2004).
    147. C. S. Chen, C. C. Chou, W. C. Yang and I. N. Lin, “Microwave Sintering of Base-Metal-Electroded BaTiO3 Capacitor Materials Co-doped with MgO/Y2O3 Additives,” J. Electroceramics, Vol. 13, pp. 573-577 (2004).
    148. M. W. Barsoum, “Fundamentals of ceramic,” The McGraw-Hill Companies, New York (1997).
    149. T. Saji, “Densification Behavior of Microwave Sintering, and Effects of Green Body Pore Size on It,” Proceedings of the International symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, Osaka, Japan, pp. 9-19 (1997).
    150. J. S. Reed, “Principles of Ceramics Processing,” Second Edition, John Wiley & Sons, Inc., New York (1994).
    151. G. M. Dynna and Y. M. Chiang, “Mechanism of Grain Growth Enhancement and Inhibition in Donor Doped Barium Titanate,” Ceramic Transactions, Vol. 7, Sintering of Advanced Ceramics. Edited by C. A. Handwerker, J. E. Blendell, and W. A. Kaysser. American Ceramic Society. Westerville, OH, USA, pp. 547-561 (1990).
    152. F. Liu, G. C. Yang, H. F. Wang, Z. Chen and Y. H. Zhou, “Nano-scale Grain Growth Kinetics,” Thermochimica Acta, Vol. 443, pp. 212-216 (2006).
    153. R. J. Brook, “Controlled Grain Growth,” Ceramic Fabrication Processes, Vol. 9, Edited by F. F. Y. Wang, Academic Press, New York, pp. 331-364 (1976).
    154. A. W. Searcy and J. W. Bullard, “Thermodynamics and Kinetics of Surface Area Changes of Faceted Particles,” J. Am. Ceram. Soc., Vol. 77, No.9, pp. 2314-2318 (1994).
    155. Y. Matsuo and H. Sasaki, “Exaggerated Grain Growth in Liquid-phase Sintering of BaTiO3,” J. Am. Ceram. Soc., Vol. 52, No. 9, pp. 471-476 (1971).
    156. D. F. K. Hennings, R. Janssen and P. J. L. Reynen, “Control of Liquid-phase-enhanced Discontinous Grain Growth in Barium Titanate,” J. Am. Ceram. Soc., Vol. 70, No. 1, pp. 23-27 (1987).
    157. D. Y. Kim, S. M. Wiederhorn, B. J. Hockey, C. A. Handwerker and J. E. Blendell, “Stability and Surface Energies of Wetted Grain Boundaries in AI2O3,” J. Am. Ceram. Soc., Vol. 77, No. 2, pp. 444-453 (1994).
    158. B. K. Lee, S. Y, Chung and S. J. L. Kang, “Grain Boundary Faceting and Abnormal Grain Growth in BaTiO3,” Acta Mater., Vol. 48, No. 7, pp. 575-580 (2000).
    159. H. Schmelz and H. Thomann, “Twinning in BaTiO3 Ceramics,” Ceram. Forum. Int., Vol. 61, pp. 199-205 (1984).
    160. G. Kastner, R. Wagner and V. Hilarius, “Nucleation of Twin by Grain Coalescence during the Sintering of BaTiO3 Ceramics,” Philos. Mag., Vol. A69, No. 6, pp. 1051-1071 (1994).
    161. V. Krasevec, M. Drofenik and D. Kolar, “Genesis of the (111) Twin in Barium Titanate,” J. Am. Ceram. Soc., Vol. 73, No. 4, pp. 856-860 (1990).
    162. J. G. Fisher, S. Y. Choi and S. -J. L. Kang, “Abnormal Grain Growth in BaTiO3 Doped with A12O3,” J. Am. Ceram. Soc., Vol.89, No. 7, pp. 2206-2212 (2006).
    163. W. A. Kaysser, M. Sprissler, C. A. Handwerker and J. E. Blendell, “Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,” J. Am. Ceram. Soc., Vol. 70, No. 5, pp. 339-43 (1987).
    164. L. A. Xue, “Additives and the Control of Grain Growth in Barium Titatate Ceramics,” Ph.D. Thesis. University of Leeds, Leeds, England (1987).
    165. D. A. Porter and K. E. Easterling, “Phase Transformations: Metals and Alloys,” Nelson Thornes Ltd., United Kingdom (2001).
    166. M. Y. Chu, M. N. Rahaman and L. C. De Jonghe, “Effect of Heating Rate on Sintering and Coarsening,” J. Am. Ceram., Soc., Vol. 74, No. 6, pp. 1217-1225 (1991).
    167. D. L. Johnson, “Microwave Heating of Grain Boundaries in Ceramics,” J. Am. Ceram., Soc., Vol. 74, No. 4, pp. 849-850 (1991).
    168. B. Meng, J. Booske, R. Cooper and S. Freeman, “Microwave Absorption in NaCl Crystals with Various Controlled Defect Conditions,” Mat. Res. Soc. Symp. Proc., Vol. 347, pp. 467-472 (1994).
    169. P. Boch and N. Lequeux, “Do Microwave Increase the Sinterability of Ceramics?” Solid State Ionics, Vol. 101-103, pp. 1229-1233 (1997).

    QR CODE