簡易檢索 / 詳目顯示

研究生: 陳國安
Khoan - Chandra
論文名稱: 十二烷基硫酸鈉界劑水溶液 超過濾行為之研究
A Study on the Ultrafiltration of Aqueous SDS Solutions
指導教授: 林析右
Shi-Yow Lin
口試委員: 曾文祺
Wen-Chi Tseng
陳立仁
Li-Jen Chen
曹恒光
Heng-Kwong Tsao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 94
語文別: 英文
論文頁數: 67
中文關鍵詞: 超過濾行十二烷基硫酸鈉界劑電導度
外文關鍵詞: Ultrafiltration, Sodium Dodecyl Sulphate solution, conductivity
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (略)


    The conductivity and ultrafiltration methods are used to study the behavior of pure SDS, mixed SDS+C12OH and SDS+DTAB aqueous surfactant solution at 25 oC. The conductivity data indicate that the CMC of mixed surfactant solution decreases with increasing the addition of C12OH. This is due to the decrease of electrical repulsion at increasing the addition of alcohol. Contrast result with DTAB, the CMC increases with increasing of the addition of C12TAB (DTAB).
    The ultrafiltration is performed for aqueous SDS solutions at different g-forces and pore sizes of membrane. The CMC of solution under different pressure, estimated from break point of filtrate concentration (Cfiltrate) versus initial concentration of SDS before filtration (CSDS) curve, decreases at increasing the g-force. For ultrafiltration SDS solution at 5,000 and 10,000 MWCO (5k and 10k) membrane, it was found that when CSDS below CMC concentration, the Cfiltrate is nearly same with the ¬CSDS, which represent all monomer of surfactant passed through the membrane. For CSDS above the CMC concentration, the Cfiltrate was found lower compare to CSDS. There are possibilities that the micelle deformed and passed through the membrane or the original of sub-micelle portion in the surfactant solution passed through the membrane.
    The ultrafiltration of mixed SDS+C12OH aqueous surfactant solution gave lower filtrate concentration compare to the result from ultrafiltration of pure SDS. The addition of DTAB to SDS gave the contrast result with the addition C12OH. The filtrate concentration result is higher compare to the pure SDS. It seems the conductivity method affected the result of filtrate concentration. The results of ultrafiltration SDS and mixed SDS aqueous surfactant solution from this study are also compared with other researcher’s result.

    Content Abstract I Acknowledgement II Content III Table List V Figure List VI Chapter 1. Introduction 1 1.1 Characteristic of Surfactant 1 1.2 Ultrafiltration Method 2 1.3 Research Purpose 3 Chapter 2. Literature Study 5 2.1 Micelle and Critical Micelle Concentration (CMC) 5 2.1.1 Principles of Conductivity Method 5 2.2 Micellization 8 2.3 Solubilization of Surfactant 10 2.4 Mixed Surfactant Systems 11 2.4.1 Solution Properties of Mixed Surfactant Systems 13 2.5 Ultrafiltration Technology and Principles 14 2.5.1 Basic Principles of Ultrafiltration 14 2.5.2 Structure and Material of Ultrafiltration Membrane 17 2.5.3 Ultrafiltration of Surfactant 18 Chapter 3. Experimental Setup 22 3.1 Experimental Equipment 22 3.2 Materials 24 Chapter 4. Experimental Procedure 26 4.1 Calibration Curve Experiment 26 4.1.1 Recipe 26 4.1.2 Experimental Procedure 26 4.2 Ultrafiltration Experiment 27 4.2.1 Experimental Procedure 27 Chapter 5. Results and Discussion 29 5.1 Calibration Curve 29 5.2 Discussion on Conductivity Results 29 5.3 Ultrafiltration Results 40 5.3.1 SDS Surfactant 40 5.3.2 Mixed SDS+C12OH Surfactant Aqueous Surfactant Solution 41 5.3.3 Concentration Ratio Analysis 41 5.3.4 Mixed SDS+DTAB Aqueous Surfactant Solution 41 5.4 Discussion on Ultrafiltration Results 42 5.5 Comparison with Previous Study 43 Chapter 6. Conclusion and Suggestion 64 6.1 Conclusion 64 6.2 Suggestion 64 References 65

    [1] M.J. Rosen, Surfactants and Interfacial Phenomena, Chapter 1 and chapter
    3, 3rd ed, Wiley (2004).
    [2] K. M. Nowak, I. Kowalska, M.K. Korbutowicz, Desalination, 2005,184, 415.
    [3] A.W. Adamson, “Wetting, Flotation, and Detergency”, Chapter XIII,
    Physical Chemistry of Surfaces, 5th ed, Wiley, (1990).
    [4] T. M. Pan, T. F. Lei, C. C. Chen, T. S. Chao, M. C. Liaw, W. L. Yang, M.
    S. Tsai, C. P. Lu, W. H. Chang, IEEE Electron Device Letters 2000, 21, 338.
    [5] W. G. Di, Y. L. Liu, B. M. Tan, W. W. Li, M. Yang, IEEE Electron Device
    Letters, 2001,1, 294.
    [6] C. C. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, Langmuir,
    1999, 15, 701.
    [7] M. Cheryan, Ultrafiltration Handbook, Technomic, USA, (1986).
    [8] Y. Osada, T. Nakagawa, “Microfiltration and Ultrafiltration” in Chapter
    8, Membrane Science and Technology, Marcel Dekker, (1992).
    [9] T. Masuura, Synthetic Membranes and Membrane Separation Processes, CRC
    Press, (1994)
    [10] J.F. Scamehorn, J.H. Harwell, “Use of Micellar-Enhanced Ultrafiltration
    to Remove Dissolved Organics from Aqueous Streams” in Chapter 1,
    Surfactant-Based Separation Processes, Surfactant Science Series, Vol. 33,
    Marcell Dekker ,(1989).
    [11] O. Lee, R.S Shecter, W.H. Wade, J. Colloid Interface. Sci., 1983, 94, 179-
    186.
    [12] O. Lee, R.S Shecter, W.H. Wade , Y. Barakat, J. Colloid Interface. Sci.,
    1984, 108, 60.
    [13] T. Asakawa, K. Johten, S. Miyagishi, M. Nishida, Langmuir, 1988, 4, 136.
    [14] A. Makayssi, D. Lemordant, C. Treiner, Langmuir, 1993, 9, 2808.
    [15] F. Grieser, T. W. Healy, W. P. Hsu, J. P. Kratohvil, G.. G.. Warr,
    Colloids Surfaces,1989, 42, 97.
    [16] G.. G. Warr, F. Grieser, and T. W. Healy, J. Phys. Chem., 1983, 87, 1220.
    [17] D. Myers, Surfactant Science and Technology, 3rd ed, Wiley, (2006).
    [18] Y. Moroi, Micelles:Theoretical and Applied Aspects, Plenum Press, (1992).
    [19] J.N. Philips, Trans. Far. Soc. 1958, 54, 587.
    [20] D. Myers, Surfaces, Interfaces, and Colloids:Principle and Applications,
    2nd ed, Wiley, 1999.
    [21] M.J. Vold, Langmuir , 1992, 8, 1082.
    [22] P. Mukerjee, J. Phys. Chem., 1972, 76, 565.
    [23] Y. Rarbi, N. Bechthold, K. Landfester, A. Salzman, M. A. Winnik, Langmuir
    2003, 19, 10.
    [24] E. Lessner, M. Teubner, M. Kahlwell, J. Phys. Chem., 1981, 85, 3167.
    [25] J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffmann, W. Ulbricht, J. Phys.
    Chem., 1975, 79, 176.
    [26] A. Patist, J. R. Kanicky, P. K. Shukla, D. O. Shah, J. Colloid Interface
    Sci., 2002,245,1.
    [27] R.C. Merrill, and J.W. McBain, J. Phys. Chem.,1942, 46, 10.
    [28] S.D Christian, J.D Scamehorn, Solubilization in Surfactant Aggregates,
    Chapter 1, Surfactant Science Series Vol. 55, Marcell Dekker, (1995).
    [29] J. H.Hildebrand, J. Am. Chem. Soc., 1929,51, 66.
    [30] P. M. Holland, D. N. Rubingh, Mixed surfactant systems, Chapter 1,2 and
    8, ACS Symposium Series 501, (1991).
    [31] P. M. Holland, D. N. Rubingh, J. Phys. Chem., 1983, 87, 1984.
    [32] K. H. Kang, H. U. Kim, K. H. Lim, N. H. Jeong, Bull. Korean Chem. Soc.,
    2001, 22, 1009.
    [33] A. A. McLachlan, D. G. Marangoni, J. Colloid Interface Sci., 2006, 295,
    243.
    [34] S. G. Oh, D. O. Shah, J. Am. Oil Soc., 1993, 70, 673.
    [35] D. N. Rubingh and P. M. Holland, “Cationic Surfactants in Mixed
    Surfactant Systems”, Chapter 4, Cationic Surfactants:Physical Chemistry,
    Surfactant Science Series Vol 37, Marcell Dekker, (1991).
    [36] D. L. Diaz, I. G. Mateos, M. M. Velazquez, Colloids Surfaces A:
    Physicochem. Eng. Aspects, 2005, 270, 153.
    [37] A. A. Rafati, H. Maleki, J. Mol. Liq., 2007, 135,128.
    [38] Millipore’s Ultrafiltration Handbook, (2004).
    [39] General asked about filtration, http://www.sterlitech.com/generalfaq.htm.
    [40] K. J. Kim, A.G. Fanen, R. B. Aim, M. G. Liu, G. Jonsson, I. C. Tessaro,
    A. P. Broek D. Bargeman, J. Membrane Sci., 1994, 87, 35.
    [41] Catalogue of Amicon Ultra-15, www.millipore.com/catalogue.nsf.
    [42] R. W. Baker, “Membrane and Modules” in Chapter 3 and
    “Ultrafiltration” in Chapter 6, Membrane Technology and Applications,
    2nd ed, John Wiley & Sons, (2004).
    [43] K. Ogino, M. Abe, Mixed Surfactant Systems, Chapter 12, Surfactant
    Science Series 46, Marcel Dekker, (1993).
    [44] J. W. McBain, S. S. Kistler, J. Phys. Chem., 1931, 35, 130.
    [45] J. W. McBain, K. Yasota, H. Lucas, J. Am. Chem. Soc., 1933, 55, 2762.
    [46] H. Schott, J. Phys. Chem., 68, 1964, 3612-3619.
    [47] A. D. W. Carswel, A. M. Lowe, X. Wei., B. P. Grady, Colloid Surfaces A:
    Physicochem. Eng. Aspects, 2003, 212, 147.
    [48] A. Hafiane, I. Issid, D. Lemordant, J. Colloid Interface Sci., 1991, 142,
    167.
    [49] K. K. Hojeong, K. Baek, J. Lee, J. Iqbal,J. W. Yang, Desalination, 2006,
    191, 186.
    [50] A.L. Horvath, Handbook of Aqueous Electrolyte Solutions:Physical
    properties, estimation and correlation methods, Ellis Horwood Ltd, (1985).
    [51] F. Daniels, R. A. Alberty, J. W. Williams, C. D. Cornweli, P. Bender, and
    J. E. Harriman, Experimental Physical Chemistry, 7th ed, McGraw Hill,
    (1970).
    [52] K. Shirahama, T. Kashiwabara, J. Colloid Interface Sci., 1971, 36, 65.
    [53] K. Hayase, S. Hayano, J. Colloid Interface Sci., 1978, 63, 446.
    [54] N. Kamenka, M. Chorro, Y. Talmon, R. Zana, Colloid Surfaces, 1992, 67,
    213.
    [55] K. L. Herrington, E. W. Kaler, D. D. Miller, J. A. Zasadzinski, S.
    Chirovolu, J. Phys. Chem., 1993, 97, 13792.
    [56] K. Takahashi, S. Hayashi, E. Yamada, M.Takahashi, Y. Nakayama, M. Ueno,
    Colloids Surfaces B: Biointerfaces, 1998, 11, 301.
    [57] K. Hara, H. Suzuki, N. Takisawa, J. Phys. Chem., 1989, 93, 3710.
    [58] R. Zana , S. Yiv, C. Strazielle, P. Lianos, J.Colloid Interface Sci.,
    1981, 80, 208.
    [59] M. Benrraou, B. L. Bales, R. Zana, J. Phys. Chem. B. , 2003, 107, 13432.
    [60] A. J. S. Monica., D. O. Shah, A Novel Method to Elucidate the Presence of
    Sub-Micellar Aggregates in Surfactant Solutions, Paper presented at
    Surfactant in Solution (SIS) Symposium 2006, Seoul-Korea.
    [61] Z. Dogic, K. R. Purdy, E. Grelet, M. Adams, and S. Fraden, Physical
    Review E, 2004, 69, 051702.

    QR CODE