簡易檢索 / 詳目顯示

研究生: 黃浩閔
Hao-min Hwang
論文名稱: 應用指叉狀微電極於生物感測器之研究
The Investigation and Applications of the Biosensors based on Interdigitated Microelectrode Array
指導教授: 王孟菊
Meng-Jiy Wang
李嘉平
Chiapyng Lee
口試委員: 陳克紹
Ko-Shao Chen
魏大欽
Ta-Chin Wei
蔡偉博
Wei-Bor Tsai
李振綱
Cheng-Kang Lee
林忻怡
Lin-Hsin YI
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 指叉狀微電極微影製程葡萄糖感測器四氟化碳電漿溶膠凝膠電漿聚合丙烯胺細胞重量
外文關鍵詞: Interdigitated transducer array (IDA) microelect, Glucose sensor, Tetrafluoromethane (CF4) plasma, Photolithography technique, Sol-gel, Cell counter, Allylamine, Plasma polymerization.
相關次數: 點閱:463下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用半導體黃光微影技術,以石英為基材,製作壓電式IDA微金電極,IDA微金電極之線寬與長度分別為7.894 μm與2245.3 μm。本論文研究分成三部分:(1) 以二氧化矽保護層與四氟化碳 (CF4) 電漿,改質IDA微金電極,製備葡萄糖生物感測器;(2) 以甲殼素(chitosan)和矽酸乙酯(tetraethyl orthosilicate, TEOS) 溶膠凝膠法,固定葡萄糖氧化酶 (glucose oxidase, GOx) 於IDA微金電極,製備葡萄糖生物感測器;(3) 第三部分則是利用石英基材特有的壓電性質,以電漿沈積丙烯胺 (allylamine) 於IDA微金電極上,控制L-929纖維母細胞的生長,並以網路分析儀量測因細胞數目改變而造成頻率變化,計算不同型態細胞的質量。
    第一部份,研究為確保IDA微金電極量測時不受以循環伏安法進行電化學實驗時施加電位之影響,以二氧化矽薄膜保護IDA微金電極,但由於沈積二氧化矽薄膜後導致所量測的電流強度下降,本研究利用CF4電漿進行表面改質,使電流響應提高,同時,在電極上加入葡萄糖氧化酶後,可應用於製備IDA微金電極葡萄糖感測器,實驗結果顯示所製備的感測器感測葡萄糖之靈敏度為0.13 贡A/mg/dL (1.83 贡A/mg/dL责cm2)。
    第二部份是以甲殼素-矽酸乙酯 (chitosan-TOES) 溶膠凝膠法混合葡萄糖氧化酶,固定葡萄糖氧化酶於IDA微金電極,IDA微金電極以雙電極模式(dual mode, 同時使用collector與generator兩電極)、四極式電極的形式進行電化學量測,可同時量測氧化與還原反應之電流響應,獲得的實驗結果可偵測濃度範圍為0-35 mM之葡萄糖,靈敏度為0.62 贡A/mM (8.74 贡A/mM责cm2)。
    第三部份是以電漿聚合丙烯胺單體,形成電漿高分子膜於IDA微金電極表面,藉由以不同時間沈積allylamine 獲得具有不同胺官能基數目的表面,以控制的細胞生長數目與型態,藉由Network Analyzer 測量頻率改變,因此本實驗可計算出圓球型的細胞質量約為 4.13 pg,而延展型細胞質量約為12.87 pg,延展型細胞的質量約為圓球型的3倍。


    A glucose biosensor with superior accuracy and sensitivity was successfully developed based on an interdigital transducer array (IDA) microelectrode (贡-electrode). The IDA 贡-electrode was prepared by a photolithography procedure with sputter coated thin layers of both gold and SiO2, followed by tetrafluoromethane (CF4) plasma treatment. The enzymatic interactions between glucose and the reactants were monitored by cyclic voltammetry method to determine the blood glucose concentration. The surface properties of the developed glucose biosensor were characterized by electron spectroscopy for chemical analysis (ESCA), atomic force microscopy (AFM), and surface wettability. The correlations between the results of surface analyses and the current responses indicated that the CF4 plasma facilitated both the exposure of gold layer underneath the protection layer and the raise of surface hydrophobicity, and therefore the enhancement of the current responses. The developed IDA-贡-electrode-based glucose biosensor showed particular precision and excellent reproducibility in measuring glucose concentration under the presence of common interferences and in real human blood measurements. Moreover, the IDA 贡-electrode displayed a sensitivity of 0.13 贡A/(mg/dL) (1.83 贡A/mg/dL责cm2) which is much higher than commercially available products.
    The prepared IDA 贡-electrode was further used as an enzymatic glucose biosensor with a layer of glucose oxidase (GOx), entrapped in a three-dimensional network composed of chitosan (CS) and tetraethyl orthosilicate (TEOS) sol-gel. The experimental parameters for the best glucose sensing performance were optimized according to the loading of GOx, the applied voltages, the concentration of mediator, and the pH for glucose detection. The resulted biosensor exhibited a good response to glucose with a wide linear range from 0 - 35 mM and a low detection limit of 1 mM. The glucose sensor also showed a short response time (within 5 s) that the fast response was reflected by the small Michaelis-Menten constant (KMapp) with a value of 2.94 mM. The reported glucose biosensor exhibited good sensitivity (8.74 μAmM-1•cm-2), reproducibility, and stability.
    The prepared IDA 贡-electrode was constructed using quartz as substrate which possesses the piezoelectric property that the change of frequency reflects the mass change on the surface of the quartz. This part took the particular property of quartz material and coated the surface of quartz with different amount of amine functional groups by using plasma polymerization of allylamine (PPA) for the cultivation of L-929 fibroblasts in order to evaluate the mass of an individual cell. The plasma polymerization revealed constant deposition rate for the PPA and the amine functional groups increased as function of the deposition time for the first 60 minutes and reached a constant value. The number of L-929 fibroblasts on the PPA deposited IDA 贡-electrode was quantified by the Network Analyzer for finding the frequency shift and the corresponding mass. The mass of the individual cell with different morphology can therefore be estimated that the cell with spherical morphology is about 4.13 pg and the highly extended cell is about 12.87 pg.

    目錄 摘要 1 Abstract 3 誌謝 6 目錄 7 符號索引 12 圖表索引 12 第一章、概 述 16 1.1研究動機 16 第二章、文獻回顧 18 2.1 壓電式IDA微金電極 19 2.1.1 壓電材料 19 2.1.2 壓電式IDA微金電極量測原理與機制 20 2.1.3 壓電式IDA微金電極於生物分子感測之應用 20 2.2 生物感測器 21 2.2.1 訊號轉換器的分類 22 2.2.2 電化學式生物感測器 23 2.2.3 壓電晶體生物感測器 24 2.3 糖尿病 27 2.4 葡萄糖感測器 29 2.5 酵素固定化 30 2.5.1以溶膠凝膠法固定酵素 31 2.6 細胞計數感測器 32 2.6.2 以壓電式IDA微金電極測量生物分子重量的特性與優勢 35 第三章、實驗方法與步驟 55 3.1 實驗設備 55 3.2實驗藥品、材料與樣品製備 56 3.2.1 樣品製備 58 3.2.3.1 製備磷酸鹽緩衝溶液及檸檬酸鈉緩衝溶液 58 3.2.3.2 製備葡萄糖及葡萄糖氧化酶溶液 58 3.2.3.3 以溶膠凝膠固定葡萄糖氧化酶 58 3.2.3.4配製電活性物質溶液 59 3.2.3.5 配製赤血鹽溶液 59 3.3製備IDA微金電極 59 3.4電容式偶合射頻電漿 60 3.5分析方法與儀器 60 3.5.1恆電位儀 60 3.5.2原子力顯微鏡 (AFM, atomic force microscopy) 60 3.5.3化學分析電子能譜儀 61 3.5.5網路分析儀 62 3.6 電化學分析方法 62 3.6.1 循環伏安法 (cyclic voltammetry, CV) 62 3.6.2、計時安培法 62 3.7 以IDA微金電極分析細胞質量 63 第四章、以IDA微金電極製備葡萄糖生物感測器 67 4.1 製備 IDA微金電極 67 4.1.1 添加電子傳遞介質於酵素層 68 4.2以四氟化碳電漿改質IDA微金電極 68 4.3四氟化碳電漿處理對於IDA微金電極表面型態的影響 69 4.4四氟化碳電漿處理對於IDA微金電極表面親疏水性質的影響 69 4.5四氟化碳電漿處理對於IDA微金電極表面化學疏水性質的影響 70 4.6 施加電位最佳化 70 4.7 市售試片與 IDA微金電極葡萄糖生物感測器比較 71 4.8 干擾測試 71 4.9 血樣測試 71 4.10 穩定性測試 72 第五章、以溶膠凝膠法固定酵素於IDA微金電極以感測葡萄糖 81 5.1 IDA微金電極表面型態與化學組成 81 5.2 酵素層和操作條件最佳化 81 5.2.1最佳化酵素濃度 81 5.2.2 最佳化電子傳遞介質濃度 82 5.2.3 最佳化溶液pH值 82 5.3 CS/sol-gel/GOx溶膠凝膠傅立業轉換紅外線光譜量測 82 5.4 CS/sol-gel/GOx溶膠凝膠固定在IDA微金電極電化學量測 83 5.5 干擾測試 84 5.6 穩定性測試 84 第六章、以壓電式IDA微金電極量測生物分子重量 92 6.1 以電漿沈積丙烯胺薄膜 92 (A) 電漿沉積PPA薄膜膜厚分析 92 (B) 電漿沉積PPA薄膜表面分析 93 6.2電漿沈積PPA膜對L-929細胞生長與貼附之影響 93 第七章、總 論 99 參考文獻 100 (附錄一) 以頻率改變計算質量 107 簡  歷 130

    參考文獻
    1. Larry, A. F., Sandra, L. W., “Diabetes 911.” American Diabetes Association, 1st Edition (2009)
    2.Kort, S. De., Kruimel, J. W., Sels, J, P., Ilja, C. W. A., Nicolaas C. S., Masclee, Ad. A. M., “Gastrointestinal symptoms in diabetes mellitus, and theirrelation to anxiety and depression.” Diabetes Research and Clinical Practice, Vol. 96, pp. 248-255 (2012)
    3.The Diabetes Control and Complications Trial Research Group., “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.” The New Eng1and Journal of Medicine, Vol. 329, pp. 977-986 (1993)
    4.Pan, M., “A novel glucose sensor system with Au nanoparticles based on microdialysis and coenzymes for continuous glucose monitoring.” Sensors and Actuators A, Vol. 108, pp. 258-262 (2003)
    5.Hintsche, R., “Chip biosensors on thin-film metal electrodes.” Sensors and Actuators B, Vol. 4, pp. 287-291 (1991)
    6.Chen, X., Jia, J., Dong, S., “Organically modified sol-gel/chitosan composite based glucose biosensor.” Electroanalysis, Vol. 15, pp. 608 (2003)
    7.Hauptmann, “Resonant sensors and applications,” Sensors and Actuators A: Physical, Vol. 26, No. 1-3, pp. 371-377 (1991)
    8.Shons, A., Dorman. F., and Najarian, J., “An immunospecific microbalance.” J. Biomed. Mater. Res., Vol. 6, pp. 565-570 (1972)
    9.Marrazza, G., Chiti, G., Mascini, M., “Detection of human apolipoprotein E genotypes by DNA electrochemical biosensors coupled with PCR.” Clinical Chemistry, Vol. 46, No. 1, pp. 31-37 (2000)
    10.Lu, H. C., Chen, H. M., Lin, Y. S., et al. “A reusable and specific protein A-coated piezoelectric biosensor for sensor for flow injection immunoassay.” Biotechnology progress, Vol. 16, No. 1, pp. 116-124 (2000)
    11.Partel, S., Mayer, M., Hudek, P., Dinçer, C., et al., “Fabrication process development for a high sensitive electrochemical IDA sensor.” Microelectronic Engineering, Vol. 97, pp. 235-240 (2012)
    12.Pan, M., Guo, X., Cai, Q., Li, G., Chen, Y, “A novel glucose sensor system with Au nanoparticles based on microdialysis and coenzymes for continuous glucose monitoring.” Sensors and Actuators A, Vol. 108, pp. 258-262 (2003)
    13.Klaus Mosbach “Thermal biosensors,” Biosensors and Bioelectronics,Vol. 6, No. 3, pp. 179-182 (1991)
    14.Guilbault, G. G., Montalvo, J. G., “Urea-specific enzyme electrode,” J. Am. Chem. Soc., Vol. 91, No. 8, pp. 2164-2165 (1969)
    15.Cooper, J. C., Hall, E. A. H., “The nature of biosensor technology,” Journal of Biomedical Engineering, Vol. 10, No. 3, pp. 210-219 (1988)
    16.Dúrso, E. M., Coulet, P. R., “Effect of enzyme ratio and enzyme loading on the performance of a bienzymatic electrochemical phosphate biosensor,” Analytica Chimica Acta, Vol. 281, No. 3, pp. 535-542 (1993)
    17.William, S. K., “Biosensor standards requirements,” Biosensors and Bioelectronics, Vol. 7, No. 9, pp. 613-620 (1992)
    18.Wijesuriya, D. C., Rechnitz, G. A., “Biosensors based on plant and animal tissues,” Biosensors and Bioelectronics, Vol. 8, No. 3–4, pp. 155-160 (1993)
    19.Masao, G., Eiichi, T., Isao K., “Micro-fet biosensors using polyvinylbutyral membrane,” Journal of Membrane Science, Vol. 41, pp. 291-303 (1989)
    20.Graham, C. R., Leslie, D., Squirrell, D. J., “Gene probe assays on a fiber-optic evanescent wave biosensor,” Biosensors and Bioelectronics, Vol. 7, No. 7, pp. 487-493 (1992)
    21.Howard, A. C., “Rapid chromatographic monitoring of bioprocesses,” Biosensors, Vol. 2, No. 5, pp. 269-286 (1986)
    22.Isao, K., Masayasu, S., “Novel immunosensors,” Biosensors, Vol. 2, No. 6, pp. 343-362 (1986)
    23.Frieder, S., Florian, S., “Chapter 4 Affinity Biosensors,” Techniques and Instrumentation in Analytical Chemistry, Vol. 11, pp. 253-290 (1992)
    24.Allen, J. B., Larry, R. F., Electrochemical Methods: Fundamentals and Applications. New York: Wiley, (2001)
    25.White, R.M., Voltmer, E.W., “Direct piezoelectric coupling to surface elastic waves,” Applied Physics Letters, Vol. 7, pp. 314-316 (1965)
    26.Fraden, J., “Handbook of modern sensors,” Springer, NY (2003)
    27.Ruppel, C. C. W., “Design, Fabrication, and Application of Precise Delay Lines at 2.45 GHz,” IEEE ultrasonics symposium, pp. 262-265. (1996)
    28.Wessa, T., Rapp, M., Sigrist, H., “Immunsensing of photoimmobilized proteins on surface acoustic wave sensors,” Colloids and Surfaces B: Biointerfaces, Vol. 15, pp. 139-146 (1999)
    29.Shorey, R., Ananda, A., Chan, M. C and Ooi, W. T., “Mobile wireless, and sensor networks,” (2006)
    30.Ying, Y., Zhong, Z.D., “A Y type SAW mass sensor with metal array reflectors,” Sensors and Actuators, Vol. 109, pp. 244-248 (2005)
    31.Hlavay, J., Guilbault, G.G., “Detection of ammonia in ambient air with coated piezoelectric crystal detector,” Anal. Chem., Vol. 50, pp 1044-1046 (1978)
    32.許清曉,常用臨床檢驗手冊,藝軒圖書, (2001)
    33.梅約醫學中心,Mayo Clinic on Managing Diabetes 糖尿病,天下生活出版社,(2001)
    34.糖尿病關懷基金會,糖尿病迷思解惑Q & A,健康文化發行,(2007)
    35.謝振傑,光纖生物感測器,物理雙月刊, Vol. 28, No. 4, (2006)。
    36.Clark, L. C., Sachs, G., “Bioelectrodes for tissues metabolism,” Annals of the New York Academy of Sciences, Vol. 148, pp.133-153 (1968)
    37.Guilbault, G. G., Montalvo, J. G., “Urea-specific enzyme electrode,” J. Am. Chem. Soc., Vol. 91, No. 8, pp. 2164–2165 (1969)
    38.林正立,溶膠-凝膠修飾電極和電流式乳酸生物感測器,國立中正大學化學研究所博士論文,(2005)
    39.文詩婷,電流式尿酸生物感測器之開發及應用,中國文化大學生物科技研究所碩士論文,(2000)
    40.Wu, B. Y., S. H. Hou, F. Yin, J. Li, Z. X. Zhao, J. D. Huang, and Q. Chen, “Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode,” Biosensors and Bioelectronics, Vol. 22, No. 6, pp. 838-844 (2007)
    41.Sampath, S. and O. Lev, “Inert metal-modified, composite ceramic-carbon, amperometric biosensors: Renewable, controlled reactive layer,” Analytical Chemistry, Vol. 68, No.13, pp. 2015-2021 (1996)
    42.Zou, Y., C. Xiang, L. X. Sun, and F. Xu, “Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel,” Biosensors and Bioelectronics, Vol. 23, No. 7, pp. 1010-1016 (2008)
    43.Fu, G., X. Yue, and Z. Dai, “Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid,”Biosensors and Bioelectronics. Vol. 26, No. 9, pp. 3973-3976 (2011)
    44.Zuo, S., Y. Teng, H. Yuan, and M. Lan, “Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film,” Sensors and Actuators, B: Chemical, Vol. 133, No.2, pp. 555-560, (2008)
    45.Dremel, B. B. A., Li, S. Y., Schmid, R. D., “On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis,” Biosensors and Bioelectronics, Vol. 7, No. 2, pp. 133-139 (1992)
    46.Israd, H. J., Courtney, E. L., Wei, M. T., Yang, D. O., Coulter, J. P., Jedlicka S. S., “Improving fluorescence imaging of biological cells on biomedical polymers,” Acta Biomaterialia, Vol. 7, No.4, pp. 1588-1598 (2011)
    47.Larsen, U. D., et al., “Microchip Coulter particle counter. Transducers 97 - 1997 International Conference on Solid-State Sensors and Actuators,” Digest of Technical Papers, IEEE, Vol. 1 and 2., pp. 1319-1322 (1997)
    48.Fuller, C. K., et al., “Microfabricated multi-frequency particle impedance characterization system,” Micro Total Analysis Systems, pp. 265-268 (2000)
    49.Li, P. C. H., Wang, W. J., Parameswaran, M., “An acoustic wave sensor incorporated with a microfluidic chip for analyzing muscle cell contraction,” Analyst, Vol. 128, pp. 225-231 (2003)
    50.Li, H., Friend, J. R. and Yeo, L. Y., “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials,. Vol. 28, pp. 4098-4104 (2007)
    51.Satakea, D., et al., “A sensor for blood cell counter using MEMS technology,” Sensors and Actuators B, Vol. 83, pp. 77-87 (2002)
    52.Detomaso, L., “Stable plasma-deposited acrylic acid surfaces for cell culture applications,” Biomaterials,Vol. 26, pp. 3831-3841 (2005)
    53.Hook, A. L., “Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly(ethylene glycol) surfaces,” Surface Science, Vol. 602, pp. 1883-1891 (2008)
    54.Wittmer, C. R., “Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies,” Biomaterials, Vol. 28, pp. 851-860 (2007)
    55.He, W., Halberstadt, C. R., Gonsalves, K. E., “Lithography application of a novel photoresist for patterning of cells,” Biomaterials, Vol. 28, pp. 851-860 (2007)
    56.Yeh, J., “Micromolding of shape-controlled, harvestable cell-laden hydrogels,” Biomaterials, Vol. 27, pp. 5391-5398 (2006)
    57.Lipski, A. M., “The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function,” Biomaterials, Vol. 29, pp. 3836-3845 (2008)
    58.Ogwu, A. A., “Endothelial Cell Growth on Silicon Modified Hydrogenated Amorphous Carbon Thin Films,” Journal of Biomedical Materials Research : B, pp. 105-113 (2007)
    59.Shah, L. K., Amiji, M. M., “Intracellular Delivery of Saquinavir in Biodegradable Polymeric Nanoparticles for HIV/AIDS,” Vol. 11, pp. 2638-2645 (2006)
    60.Selby, J. C., Shannon, M. A., “A method to fabricate mesoscopic freestanding polydimethylsiloxane membranes used to probe the rheology of an epithelial sheet,” J. Biochem. Biophys. Methods, Vol. 70, pp. 932-944 (2008)
    61.Scott, M. D., Chen, A. M., “Beyond the red cell: pegylation of other blood cells and tissues Au-delà du GR : Traitement par PEG des cellules sanguines et autres tissus,” Transfusion Clinique et Biologique, Vol. 11, pp. 40-46 (2004)
    62.Vihola, H., “Cell–polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer,” International Journal of Pharmaceutics, pp. 238-246 (2007)
    63.Wang, H., “Modulating cell adhesion and spreading by control of FnIII7-10 orientation on charged self-assembled monolayers (SAMs) of alkanethiolates,” Journal of Biomedical Materials Research Part A, pp. 672-678 (2005)
    64.Jokhadar, S. Z., Znidarcic, T., Svetina, S., Batista, U., “The effect of substrate and adsorbed proteins on adhesion, growth and shape of CaCo-2 cells,” Cell Biology International, Vol. 31, pp. 1097-1108 (2007)
    65.Douglas, C. W., Krystal, R. St. J., James, S. L., David, K., “Cell shape regulation by Gravin requires N-terminal membrane effector domains,” Biochemical and Biophysical Research Communications, Vol. 375, pp. 512–516 (2008)
    66.彭文權, 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒 , 元智大學碩士論文 (1997)
    67.Allen, J. B., Larry, R. F., Electrochemical Methods: Fundamentals and Applications, 2nd edition, New York, Wiley (2001)
    68.Brian, R. E., Chemical Sensors and Biosensors, 1st edition, New York, Wiley (2005)

    無法下載圖示 全文公開日期 2018/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE