簡易檢索 / 詳目顯示

研究生: 許坤定
Dean - K. Sheu
論文名稱: 折彎與沖剪板金件之連續沖模順序規劃
Sequence Planning for Bending and Shearing Operations in Progressive Dies
指導教授: 林清安
Alan C. Lin
口試委員: 修芳仲
Fang-Jung Shiou
歐陽超
Chao Ou-Yang
瞿志行
Chih-Hsing Chu
陳湘鳳
Shana Smith
楊宏智
Hong-Tsu Young
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 疊層法連續沖模順序規劃
外文關鍵詞: progressive dies, superimposition scheme, sequence planning
相關次數: 點閱:217下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在討論如何能以疊層法快速地產生具有剪切與折彎特徵板金件的連續沖模順序規劃, 同時也能從眾多可行解中找到優良解,疊層法主要的問題在當沖頭數目增加時,會形成龐大的求解空間,本論文以三個步驟來進行研究:料條準備,沖頭排列及評選規劃.沖頭排列是依各沖頭特性區分為:前站組,末站組,同站組,順序組及互斥組,由此再找出沖頭相容集合,並歸納出所有可行解,評選規劃運用多準則決策模式,從多個可行解中評選出數個優良解,本評選規則包括:站數因子,平衡因子,穩定因子及提升因子等四個,最後本論文也以三個案例說明本方法並快速產生料條.


    This thesis aims to study the use of a superimposition scheme to quickly plan the sequence in a progressive die design for a sheet metal part which contains bending and shearing features, and to determine the better ones among multiple feasible solutions. The major problem of applying superimposition is that the possible solutions form an excessive solution space when multiple punches are used. In order to solve the problem, this thesis introduces the following three steps: preparation of strips, punch layout, and layout evaluation. The step of punch layout uses clustering rules to classify punches into five groups: prior use (the punches must be used first), posterior use (must be used last), simultaneous use (must be used together), sequential use (certain punches must precede some others), and exclusive use (must not be used together). It then derives the compatible sets for each punch, followed by an expansion of number of punches and punch layout, in order to obtain all feasible solutions. The step of layout evaluation adopts a Multiple Criteria Decision Making (MCDM) model with a scoring function to analyze every feasible solution and determines better sequencing plans. The scoring function used is based on the following four criteria: number of stages, moment balancing, strip stability, and feeding height. In addition to proposing the methodology, this thesis also builds up a pilot system and demonstrates how the proposed method can generate feasible sequences in a strip.

    TABLE OF CONTENTS ABSTRACT……………………………………………………………...………….II ACKNOWLEDGEMENTS………………………………………………………….III TABLE OF CONTENTS………………………………………………………..…V LIST OF TABLES……………………………………………..………………VIII LIST OF FIGURES……………………………….………………………….IX CHAPTER 1 INTRODUCTION……………………………………………..………….1 1.1 Strip layout using superimposition…………………………………..…………..2 1.2 Literature review……………………………………………………...………….5 1.3 Objective and methodology………….……………………………….…….8 1.4 Deposition………………………………………………………………………..8 CHAPTER 2 SHEET METALWORKING AND PROGRESSIVE DIES………..…..10 2.1 Review of sheet metalworking………………………………………………….10 2.1.1 Shearing operations……………………………………………...……….15 2.1.2 Bending operations………………………………………………….……18 2.2 Review of progressive dies…………………………………………...…………20 2.2.1 Definition of progressive dies….…………………………………..……21 2.2.2 Terms used in progressive dies……………..….………….………….…..21 2.2.3 Progressive die design……………………………………………………22 2.3 Review of Pro/ENGINEER…………………………………………….….……23 2.3.1 Pro/SHEETMETAL parts…………………………………………….…..23 2.3.2 Review of Pro/Web.Link…………………………………………………24 CHAPTER 3 SEQUENCE PLANNING FOR PROGRESSIVE DIES…………...26 3.1 Obtain all feasible sequences………………..…………………………………...26 3.2 Procedure of sequence planning for progressive dies………………………………………………27 3.3 Preparation of strips………………………………………………….………..…30 3.3.1 Unfolding bends…..……………………………………………………….31 3.3.2 Punch design……………………………………………………………..32 3.3.3 Bending feature tree ………………………………………………………32 3.4 Layout of bending operations……..…………………………………….…….…34 3.4.1 Types of bending operations………………………….…………………..35 3.4.2 Clustering of bending punches……………………….…………………..35 3.4.3 Expansion of number of bending punches……….………………….……40 3.4.4 Generation of bending sequences……………….……………………….41 3.5 Layout of shearing operations…………………………………………….….43 3.5.1 Clustering of shearing punches………..…….……………………...…….44 3.5.2 Expansion of number of shearing punches……………………….……..46 3.5.3 Generation of shearing sequences……………………………...………49 3.6 Merge of bending and shearing sequences…….………….…………………….51 3.7 Consideration of material factors…….…………………………………………54 3.8 Consideration of collision………………………………………………………..55 3.9 Insertion of idle stages………..…………..…………………………………...56 CHAPTER 4 LAYOUT EVALUATION…...…………………………………………59 4.1 Stage number factor...……………..……………………………………...……….60 4.2 Moment balancing factor……………………………….….………………….…61 4.3 Strip stability factor………………………………………….………………..…63 4.4 Feeding height factor……………………………………………………………65 4.5 Calculation of evaluation scores…………….……………….……………….…77 CHAPTER 5 IMPLEMENTATION AND CASE STUDY…………...….…….……70 5.1 System modules………………………………………………………………….70 5.2 CAD models for evaluation……………………………………………………...75 5.2.1 Recognition of operation sequence……………………………………75 5.2.2 Recognition of punching operations……....………………………….77 5.2.3 Recognition of notching operations…………………………….……78 5.2.4 Recognition of bending operations………..……..…………………83 5.3 Case study 1………………………………………….…………………………..85 5.4 Case study 2………………………………………………….………………..…89 5.5 Case study 3………………………………………………….…………………..93 5.6 Validation…………………………………………...…………………………...98 CHAPTER 6 CONCLUSIONS……………...………………………………………..100 CHAPTER 7 FUTURE RESEARCH……...……………………………………...….102 REFERENCES.………………………………………………….…………………………………….103

    REFERENCES
    [1] Nee, A.Y.C., PC-based computer aids in sheet-metal working, Journal of Mechanical Working Technology, Vol. 19, No. 1, 1989, pp. 11-21.
    [2] Cheok, B.T. and Nee, A.Y.C., Trends and developments in the automation of design and manufacture of tools for metal stampings, Journal of Materials Processing Technology, Vol. 75, No. 1-3, 1998, pp. 240-252.
    [3] Korneli, M., Designing progressive dies - Reviewing the basics of progressive tooling, Stamping Journal, September 17, 2001.
    [4] Kurt, L., Handbook of Metal Forming, McGraw-Hill Publishing Co., New York, 1991.
    [5] Paguin, J. R. and Crowley, R. E., Die Design Fundaments, Industrial Press Co., New York, 1987.
    [6] Wilson, F. W. and Harvey, P. H., Die Design Handbook, McGraw-Hill Publishing Co., New York, 1963.
    [7] Suchy, I., Handbook of die design, McGraw-Hill Publishing Co., New York, 2006.
    [8] Dai I. J., Die Fabrication and Design, Shin Lu Book Co., Taipei, Taiwan, 1992.
    [9] Schubert, P. B., Die Methods: Design, Fabrication, Maintenance, and Application, Industrial Press, New York, 1967.
    [10] Gupta, S. K., Sheet metal bending operation planning: using virtual node generation to improve search efficiency, Journal of Manufacturing Systems, Vol. 18, No. 22, 1999, pp. 127-139.
    [11] Schaffer, G., Computing design of progressive die, American Machinist, Vol. 22, 1971, pp. 73-75.
    [12] Nakahara, S., Toshio, K., Tamura, K., Asuke, F., Soda, C. and Nakamura, T., Computer aided progressive die design, Proceedings of the 19th Machine Tool Design Research Conference, London, 1978, pp. 171-176.
    [13] Bergstrom, K., Kivivuori, S., Osenius, S. and Korhonen, A., Computer aided design of progressive die, Chersot In J. L. and Ohate E. (eds.), Modeling of Metal Forming Processes, Kluwer Academic Publishers, New York, 1988, pp. 155-162.
    [14] Choi, J. C., Kim, B. M. and Kim, C., An automated progressive process planning and die design and working system for blanking or piercing and bending of a sheet metal product, International Journal of Advanced Manufacturing Technology, Vol. 15, No. 7, 1999, pp. 485-497.
    [15] Ben-Arieh, D. and Kramer, B. Computer-aided process planning for assembly: generation of assembly operations sequence, International Journal of Production Research, Vol. 32, No. 3, 1994, pp. 643-656.
    [16] Homem de Mello L S and Sanderson A. C., AND/OR graph representation of assembly plans, IEEE transactions on Robotics and Automation, Vol. 6. No. 2, pp. 188-199.
    [17] De Fazio, T. L. and Whitney, D. E., Simplified generation of all mechanical assembly sequences, IEEE Journal of Robotics and Automation, Vol. 3, No. 6, 1987, pp. 640-658.
    [18] Bullinger, H. J. and Ammer, E. D., Computer aided depicting of precedence diagrams - a step towards efficient planning in assembly, Computing and Industrial Engineering, Vol. 18, No. (3/4), 1984, pp. 165-169.
    [19] Wolter, J. D., On the automatic generation of assembly plans, Procedings of the IEEE International Conference on Robotics and Automation, Vol. 1, 1990, pp. 62-68.
    [20] De Ftoriani, G. N., A graph model for face-to-face assembly, Proceedings of the 1EEE International Conference on Robotics and Automation, Vol. 1, 1989, pp. 75-78.
    [21] Tang, D. and Gao, B., Feature-based metal stamping part and process design. Part II: stamping process planning, International Journal of Production Research, Vol. 45, No. 13, 2007, pp. 2997-3015.
    [22] Li, C., Li, J., Wen, J. and Xiao, X., HPRODIE: using feature modelling and feature mapping to speed up progressive die design, International Journal of Production Research, Vol. 39, No. 18, 2001, pp. 4133-4151.
    [23] Zhang, W. Y., Tor, S. B. and Britton, G. A., A Hybrid Intelligent System for Stamping Process Planning in Progressive Die Design, Innovation in Manufacturing Systems and Technology, January 2004, Available from: MIT Dspace, Http://hdl.handle.net/1721.1/3905 [Accessed 20 Mar. 2010].
    [24] Kannan, T. R. and Shunmugam, M. S., Processing of 3D sheet metal components in STEP AP-203 format. Part I: feature recognition system, International Journal of Production Research, Vol. 47, No. 4, 2009, pp. 941-964.
    [25] Kumar, S. and Singh, R., Automation of strip-layout design for sheet metal work on progressive die, Journal of Materials Processing Technology, Vol. 195, 2008, pp. 94-100.
    [26] Duflou, J. R., Van, O. D., Kruth, J. P. and Cattrysse, D., Methods for the sequencing of sheet metal bending operations, International Journal of Production Research, Vol. 37, 1999, pp. 3185-3202.
    [27] Inui, M. and Terakado, H., Fast bending sequence planning for progressive press-working, Proceedings of the 1999 IEEE, International Symposium on Assembly and Task Planning, Porto, Portugal, July 1999, pp. 344-349.
    [28] Thanapandi, C. M., Walairacht, A., and Ohara, S., Genetic algorithm for bending process in sheet metal industry, IEEE Electrical and Computer Conference, Toronto, Vol. 2, 2001, pp. 957-962.
    [29] Tor, S. B., Britton, G. A. and Zhang, W. Y., Development of an object-oriented blackboard model for stamping process planning in progressive die design, Journal of Intelligent Manufacturing, Vol. 16, No. 4-5, 2005, pp. 499-513.
    [30] Kannan, T. R. and Shunmugam, M. S., Processing of 3D sheet metal components in STEP AP-203 format. Part II: feature reasoning system, International Journal of Production Research, Vol. 47, No. 5, 2009, pp. 1287-1308.
    [31] Yamaguchi, F., Fundamental of Progressive Dies Design and Applications, Business and Technology Daily News, Tokyo, 2001.
    [32] Chu, S. N., Handbook of Punching Die Design, Metal Industries Research and Development Center, Kaohsiung, 2000.
    [33] CUSTOMPART: http://www.custompartnet.com/wu/sheet-metal [Accessed 20 Dec. 2011].
    [34] Kalpakjian, S., Manufacturing engineering and technology, Addison-Wesley, New York, 1995.
    [35] Lewis, C., A Pro/Engineers Guide to Pro/Web.Link, Lulu Publisher, Raleigh, 2008.
    [36] Sung, Shiang-Yu, Pro/Toolkit Programming for Layout of Manufacturing Operations of Stripes in Progressive Dies, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 2009.
    [37] Farsi, M. A. and Arezoo, B., Development of a new method to determine bending sequence in progressive dies, International Journal of Advanced Manufacturing Technology, Vol. 43, 2009, pp. 52-60.
    [38] Li, J. Y., Nee A. Y. C. and Cheok, B. T., Integrated feature-based modeling and process lanning of bending operations in progressive die design, International Journal of Advanced Manufacturing Technology, Vol. 20, 2002, pp. 883-895.
    [39] Groover, M. P., Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, John Wiley & Sons, Inc., New York, 2001.
    [40] Gass, S. and Saaty, T., Parametric Objective Function Part II - Generalization, Operations Research, Vol. 3, No. 4, Nov.1955, pp. 395-401.
    [41] Anderson, D. R., Sweeney, D. J., Williams, T. A. and Martin, K., An Introduction to Management Science: Quantitative Approaches to Decision Making, Thomas South-Western, New York, 2008, pp. 665.
    [42] Lin, Z.C. and Chang, J.M., Application of the torque equilibrium method in the study of offset displacement in the upper and lower dies in a shearing-cut progressive die, International Journal of Material Production Technology, Vol. 16, No. 6-7, 2001, pp. 528-544.
    [43] Lin, Z. C. and Chen, C. C., The application of the moment equilibrium model to the offset of pressure centre of trimming progressive die in IC packaging machine, Journal of Materials Processing Technology, Vol. 140, No. 1-3, 2003, pp. 653-661.
    [44] Ho, M. T., Pro/Web.Link Programming for Evaluating Strip Layout of Progressive Dies, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 2011.

    QR CODE