簡易檢索 / 詳目顯示

研究生: 顏均叡
Jyun-Ruei Yan
論文名稱: 以噴霧乾燥法製備不同銀前驅物生物活性玻璃之體外生物活性與抗菌性質之研究
Investigation of in vitro bioactivity and antibacterial property of spray-dried Ag-doped bioactive glass treated with different Ag
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 生醫陶瓷生物活性玻璃銀摻雜生物活性抗菌
外文關鍵詞: Bioceramic, Bioactive glass, Sliver-doped, Bioactivity, Antibacterial
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

據研究顯示,Hench團隊提出的生物活性玻璃與其他骨植入物相比具有更好降解性,並且於人體中形成氫氧基磷灰石與骨骼進行鍵結加速組織的修復。此外生物活性玻璃可摻雜不同的功能性元素達到不同的需求,在進行組織植入以及傷口修復的過程中,發炎及細菌感染的機率極高,因此本研究採用有抗菌能力相當出色之銀作為摻雜元素。在製程上利用噴霧乾燥法之生產效率高、形貌易控制、前驅物溶液限制少等優點來製備本研究之摻銀之生物活性玻璃。
本研究利用噴霧乾燥法製備生物活性玻璃和不同前驅物銀來探討元素分布、體外生物活性、抗菌能力、及對於生物活性玻璃微粒之影響。並以不同的分析方法佐證,例如X光繞射儀、電子顯微鏡、紅外線光譜儀等儀器來分析樣品性質。
實驗結果顯示摻雜不同前驅物銀的生物活性玻璃都對生物活性無顯著影響以及具備良好的抗菌能力,但以此研究的製程和配方無法達到與先前利用噴霧熱解法所製備出銀的不同元素分布狀況。


According to research, the bioactive glass proposed by Hench's team has better degradability than other bone implants, and forms hydroxyapatite in the human body to bond with bones to accelerate tissue repair. In addition, bioactive glass can be doped with different functional elements to meet different needs. During the process of tissue implantation and wound repair, the probability of inflammation and bacterial infection is extremely high. Therefore, this study uses silver with excellent antibacterial ability. as doping elements. In terms of manufacturing process, the advantages of spray drying method such as high production efficiency, easy control of morphology, and less restriction of precursor solution were used to prepare the silver-doped bioactive glass in this thesis.
This study uses spray drying method to prepare bioactive glass and different precursor silver to explore the component distribution, in vitro biological activity, antibacterial ability, and the impact on bioactive glass particles. And it is supported by different analysis methods, such as X-ray diffractor electron microscope and other instruments to analyze the sample characteristics.
Experimental results show that bioactive glasses doped with different silver precursors have good bioactivity and antibacterial ability. However, our process and formula cannot achieve a different distribution of silver than previously prepared by spray pyrolysis.

目錄 1 第一章、緒論 1 1.1 研究背景和動機 1 1.2 研究目的 2 2 第二章、文獻回顧 3 2.1 骨骼與骨修復 3 2.2 骨填充材 6 2.2.1 天然高分子聚合物 6 2.2.2 合成高分子聚合物 7 2.2.3 生醫陶瓷 8 2.2.4 聚合物陶瓷複合材料 8 2.3 生醫陶瓷 9 2.3.1 生物惰性陶瓷 9 2.3.2 生物活性(表面反應性)陶瓷 10 2.3.3 可吸收性生醫陶瓷 11 2.4 生物活性玻璃 12 2.4.1 玻璃網路 12 2.4.2 生物活性之機制 14 2.4.3 生物活性玻璃的組成和發展 19 2.5 生物活性玻璃的合成方式 21 2.5.1 傳統玻璃法(Conventional glass method) 21 2.5.2 溶膠凝膠法(Sol-gel method) 22 2.5.3 噴霧熱解法(Spray pyrolysis method) 23 2.5.4 噴霧乾燥法(Spray drying method) 24 2.6 噴霧乾燥法之介紹 25 2.6.1 設備和製程原理 25 2.6.2 製程參數對噴霧乾燥法之影響 27 2.6.3 粉體之控制因子 28 2.7 功能性元素之應用及發展 30 2.7.1 銀對於抗菌之影響 30 2.7.2 元素分布之應用 31 3 第三章、實驗方法 32 3.1 實驗設計與流程 32 3.2 樣品製備與實驗藥品 34 3.3 實驗儀器之介紹與分析方法 36 3.3.1 X 光繞射分析儀(X-ray diffractometer, XRD) 37 3.3.2 場發射/掃描式電子顯微鏡(Scanning electron microscope, SEM) 及能量散射X射線分析(Energy-dispersive X-ray spectroscopy, EDS) 38 3.3.3 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 39 3.3.4 穿透式電子顯微鏡(Transmission electron microscope, TEM) 40 3.4 體外生物活性試驗(In vitro test of bioactivity) 41 3.5 體外細胞毒性和相容性測試(In vitro test of cytotoxicity) 42 3.6 大腸桿菌抗菌能力測試 43 4 第四章、實驗結果 44 4.1 前驅物溶液濃度與形貌關係 44 4.2 生物活性玻璃性質分析 46 4.2.1 晶體結構分析 46 4.2.2 樣品形貌及粒徑分布 47 4.2.3 穿透式電子顯微鏡分析 49 4.2.4 成分組成半定量分析 52 4.3 體外生物活性分析 53 4.3.1 晶體結構分析 53 4.3.2 表面形貌觀察 55 4.3.3 元素組成分析 56 4.3.4 官能基及鍵結分析 57 4.4 體外細胞毒性實驗 59 4.5 抗菌能力實驗 60 5 第五章、結果討論 62 5.1 銀摻雜與濃度對於生物活性玻璃形貌之影響 62 5.2 銀摻雜在此製程對於生物活性之影響 63 5.3 不同製程和配方對於元素分布之探討 64 5.4 不同前驅物銀摻雜對本製程之影響 66 5.5 銀摻雜對於細胞毒性之影響 66 6 第六章、結論 67 7 第七章、未來展望 68 8 第八章、參考文獻 69

[1] https://www.moi.gov.tw/News_Content.aspx?n=4&sms=9009&s=264811 內政部 內政部全球資訊網-中文網 2022
[2] https://www.ndc.gov.tw/Content_List.aspx?n=D527207EEEF59B9B 國家發展委員會 國發會全球資訊網, 國家發展委員會 2015
[3] World Osteoporosis Day
[4] Kaufman J-M, Reginster J-Y, Boonen S, Brandi M L, Cooper C, Dere W, Devogelaer J, Diez-Perez A, Kanis J A, Mccloskey E, Mitlak B, Orwoll E, Ringe J D, Weryha G and Rizzoli R 2012 Treatment of osteoporosis in men Bone 53
[5] Pawelec K and Planell J A 2018 Bone Repair Biomaterials: Regeneration and Clinical Applications (Woodhead Publishing)
[6] Arya D P and College D Bone Structure and formation
[7] Bone Structure – TeachPE.com
[8] Biga L M, Bronson S, Dawson S, Harwell A, Hopkins R, Kaufmann J, LeMaster M, Matern P, Morrison-Graham K, Oja K, Quick D, Runyeon J, Oeru O and OpenStax 2019 6.3 Bone Structure
[9] Bone Healing | Webinars Labroots
[10] Aslankoohi N, Mondal D, Rizkalla A S and Mequanint K 2019 Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment Polymers (Basel) 11 1437
[11] Chung H J, Go D H, Bae J W, Jung I K, Lee J W and Park K D 2005 Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial Current Applied Physics 5 485–8
[12] West J L and Hubbell J A 1999 Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration Macromolecules 32 241–4
[13] Anon Reaction of bone to the acute chemical trauma of bone cement : JBJS
[14] Nair L S and Laurencin C T 2007 Biodegradable polymers as biomaterials Progress in Polymer Science 32 762–98
[15] Kim J Y and Cho D-W 2009 Blended PCL/PLGA scaffold fabrication using multi-head deposition system Microelectronic Engineering 86 1447–50
[16] Ali B H 1995 Gentamicin nephrotoxicity in humans and animals: Some recent research General Pharmacology: The Vascular System 26 1477–87
[17] Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 Bonding mechanisms at the interface of ceramic prosthetic materials Journal of Biomedical Materials Research 5 117–41
[18] Dorozhkin S V 2010 Bioceramics of calcium orthophosphates Biomaterials 31 1465–85
[19] Dressler M, Dombrowski F, Simon U, Börnstein J, Hodoroaba V D, Feigl M, Grunow S, Gildenhaar R and Neumann M 2011 Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics Journal of the European Ceramic Society 31 523–9
[20] Ignjatović N, Tomić S, Dakić M, Miljković M, Plavšić M and Uskoković D 1999 Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials Biomaterials 20 809–16
[21] Epidemiology of osteoporosis and fragility fractures | International Osteoporosis Foundation
[22] Al-Timimi Z and Tammemi Z J Nanoparticles of Alumina (Al2O3): An Overview and Their Applications in Medical Surgery
[23] Morks M F and Kobayashi A 2008 Development of ZrO2/SiO2 bioinert ceramic coatings for biomedical application Journal of the Mechanical Behavior of Biomedical Materials 1 165–71
[24] Patton R S, Runner R P, Lyons R J and Bradbury T L 2018 Clinical Outcomes of Patients With Lateral Femoral Cutaneous Nerve Injury After Direct Anterior Total Hip Arthroplasty The Journal of Arthroplasty 33 2919-2926.e1
[25] Groot K de 1991 Medical Applications of Calciumphosphate Bioceramics J. Ceram. Soc. Japan 99 943–53
[26] Poitout D G 2016 Biomaterials Used in Orthopedics Biomechanics and Biomaterials in Orthopedics ed D G Poitout (London: Springer) pp 13–9
[27] Panda S, Biswas C K and Paul S 2021 A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering Ceramics International 47 28122–44
[28] Hench L L 1991 Bioceramics: From Concept to Clinic J American Ceramic Society 74 1487–510
[29] Thamaraiselvi T and Rajeswari S 2004 Biological Evaluation of Bioceramic Materials - A Review Trends in biomaterials & artificial organs
[30] Jayaswal G P, Dange S P and Khalikar A N 2010 Bioceramic in dental implants: A review J Indian Prosthodont Soc 10 8–12
[31] Manzano M and Vallet-Regí M 2012 Revisiting bioceramics: Bone regenerative and local drug delivery systems Progress in Solid State Chemistry 40 17–30
[32] Li Y, Weng W and Tam K C 2007 Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate Acta Biomaterialia 3 251–4
[33] Bohner M, Santoni B L G and Döbelin N 2020 β-tricalcium phosphate for bone substitution: Synthesis and properties Acta Biomaterialia 113 23–41
[34] Shelby J E 2005 Structures of glasses
[35] Seddon A B 2011 A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses International Journal of Applied Glass Science 2 177–91
[36] Mehrabi T, Mesgar A S and Mohammadi Z 2020 Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing ACS Biomater. Sci. Eng. 6 5399–430
[37] Huang W, Rahaman M N, Day D E and Li Y 2006 Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution Physics and Chemistry of Glasses - European Journal of Glass Science andTechnology Part B 47 647–58
[38] Huang W, Day D E, Kittiratanapiboon K and Rahaman M N 2006 Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions J Mater Sci: Mater Med 17 583–96
[39] Brown R, Rahamen N, Huang W 2009 Conversion of Borate Glass to Hydroxyapatite and its Effect on Proliferation of MC3T3-E1 Cells Journal of Biomedical Materials Research Part A 88(2):392-400
[40] Wang H, Zhao S, Xiao W, Xue J, Shen Y, Zhou J, Huang W, Rahaman M N, Zhang C and Wang D 2016 Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds Materials Science and Engineering: C 58 194–203
[41] Jones J and Clare A 2012 Bio-Glasses: An Introduction (John Wiley & Sons)
[42] Brow R K 2000 Review: the structure of simple phosphate glasses Journal of Non-Crystalline Solids 263–264 1–28
[43] Ahmed I, Lewis M, Olsen I and Knowles J C 2004 Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system Biomaterials 25 491–9
[44] Hench L L 2009 Genetic design of bioactive glass Journal of the European Ceramic Society 29 1257–65
[45] Silver I A, Deas J and Erecińska M 2001 Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability Biomaterials 22 175–85
[46] Hoppe A, Güldal N S and Boccaccini A R 2011 A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics Biomaterials 32 2757–74
[47] Yang X, Zhang L, Chen X, Sun X, Yang G, Guo X, Yang H, Gao C and Gou Z 2012 Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics Journal of Non-Crystalline Solids 358 1171–9
[48] Cao W and Hench L L 1996 Bioactive materials Ceramics International 22 493–507
[49] Gerhardt L-C and Boccaccini A R 2010 Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering Materials 3 3867–910
[50] Fowler B O 1974 Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution Inorg. Chem. 13 194–207
[51] Martin R, Twyman H, Qiu D, Knowles J and Newport R 2009 A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction Journal of materials science. Materials in medicine 20 883–8
[52] Karlsson K H, Fröberg K and Ringbom T 1989 A structural approach to bone adhering of bioactive glasses Journal of Non-Crystalline Solids 112 69–72
[53] Li R, Clark A E and Hench L L 1991 An investigation of bioactive glass powders by sol-gel processing J. App. Biomater. 2 231–9
[54] Kargozar S, Baino F, Hamzehlou S, Hill R G and Mozafari M 2018 Bioactive glasses entering the mainstream Drug Discovery Today 23 1700–4
[55] Pantulap U, Arango-Ospina M and Boccaccini A R 2021 Bioactive glasses incorporating less-common ions to improve biological and physical properties J Mater Sci: Mater Med 33 3
[56] Hench L L 2006 The story of Bioglass® J Mater Sci: Mater Med 17 967–78
[57] Vallet-Regí M and Salinas A J 2019 Ceramics as bone repair materials Bone Repair Biomaterials (Elsevier) pp 141–78
[58] Gil-Albarova J, Salinas A J, Bueno-Lozano A L, Román J, Aldini-Nicolo N, García-Barea A, Giavaresi G, Fini M, Giardino R and Vallet-Regí M 2005 The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing Biomaterials 26 4374–82
[59] Gil-Albarova J, Garrido-Lahiguera R, Salinas A J, Román J, Bueno-Lozano A L, Gil-Albarova R and Vallet-Regı́ M 2004 The in vivo performance of a sol–gel glass and a glass-ceramic in the treatment of limited bone defects Biomaterials 25 4639–45
[60] Meseguer-Olmo L, Ros-Nicolás M J, Clavel-Sainz M, Vicente-Ortega V, Alcaraz-Baños M, Lax-Pérez A, Arcos D, Ragel C V and Vallet-Regí M 2002 Biocompatibility and in vivo gentamicin release from bioactive sol–gel glass implants Journal of Biomedical Materials Research 61 458–65
[61] Shih S-J, Wu Y-Y, Chen C-Y and Yu C-Y 2012 Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis Procedia Engineering 36 186–94
[62] Shih S-J, Tzeng W-L, Jatnika R, Shih C-J and Borisenko K B 2015 Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis: Ag DISTRIBUTION FOR Ag-DOPED MESOPOROUS BIOACTIVE GLASSES J. Biomed. Mater. Res. 103 899–907
[63] Kuo C-K, Chen L-G, Tseng C-F and Chou Y-J 2021 Influences of acid catalysts on the microstructure, bioactivity and cytotoxicity of bioactive glass nanoparticles prepared by spray pyrolysis Journal of Non-Crystalline Solids 560 120710
[64] Shih S-J, Chang L-Y S, Chen C-Y, Borisenko K B and Cockayne D J H 2009 Nanoscale yttrium distribution in yttrium-doped ceria powder J Nanopart Res 11 2145–52
[65] Workie A B, Ningsih H S and Shih S-J 2023 An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications Journal of Analytical and Applied Pyrolysis 170 105915
[66] Pluym T C, Kodas T T, Wang L-M and Glicksman H D 1995 Silver-palladium alloy particle production by spray pyrolysis Journal of Materials Research 10 1661–73
[67] Patil P S 1999 Versatility of chemical spray pyrolysis technique Materials Chemistry and Physics 59 185–98
[68] Naşcu C, Pop I, Ionescu V, Indrea E and Bratu I 1997 Spray pyrolysis deposition of CuS thin films Materials Letters 32 73–7
[69] Chou Y-J Microstructure and bioactivity correlation of one-step synthesized bioactive glass
[70] Sosnik A and Seremeta K P 2015 Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers Advances in Colloid and Interface Science 223 40–54
[71] Eslamian M and Ashgriz N 2007 The Effect of Atomization Method on the Morphology of Spray Dried Particles Journal of Engineering Materials and Technology 129 130–42
[72] Pignatello R and Musumeci T 2018 Biomaterials: Physics and Chemistry - New Edition (BoD – Books on Demand
[73] Lintingre E, Lequeux F, Talini L, Tsapis N 2016 Control of particle morphology in the spray drying of colloidal suspensions - Soft Matter (RSC Publishing)
[74] Liang H, Shinohara K, Minoshima H and Matsushima K 2001 Analysis of constant rate period of spray drying of slurry Chemical Engineering Science 56 2205–13
[75] Hashib S A, Rahman N A, Suzihaque M U H, Ibrahim U K and Hanif N E 2015 Effect of Slurry Concentration and Inlet Temperature Towards Glass Temperature of Spray Dried Pineapple Powder Procedia - Social and Behavioral Sciences 195 2660–7
[76] Yang H M, Kim S S 2000 Experimental Study on the Spray Characteristics in the Spray Drying Absorber | Environmental Science & Technology
[77] Ivey J W, Bhambri P, Church T K, Lewis D A and Vehring R 2018 Experimental investigations of particle formation from propellant and solvent droplets using a monodisperse spray dryer Aerosol Science and Technology 52 702–16
[78] Vehring R, Foss W R and Lechuga-Ballesteros D 2007 Particle formation in spray drying Journal of Aerosol Science 38 728–46
[79] Vehring R 2008 Pharmaceutical Particle Engineering via Spray Drying Pharm Res 25 999–1022
[80] Nielsen K Silver. A powerful weapon against microbes - Coloplast
[81] Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W and Minglei Z 2023 Implantable biomedical materials for treatment of bone infection Front. Bioeng. Biotechnol. 11
[82] Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T and Pola J 2020 Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review RSC Advances 10 33782–835
[83] Akhtach S, Tabia Z, Bricha M and El Mabrouk K 2021 Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses Ceramics International 47 29036–46
[84] Lallukka M, Miola M, Verné E and Baino F 2024 Silver-doped glass-ceramic scaffolds with antibacterial and bioactive properties for bone substitution Ceramics International S0272884224022867
[85] Prabhu M, Kavitha K, Suriyaprabha R, Manivasakan P, Rajendran V and Kulandaivelu P 2013 Preparation and Characterization of Silver-Doped Nanobioactive Glass Particles and Their <I>In Vitro</I> Behaviour for Biomedical Applications j. nanosci. nanotech. 13 5327–39
[86] Eslamian M and Ashgriz N 2011 Spray Drying, Spray Pyrolysis and Spray Freeze Drying Handbook of Atomization and Sprays: Theory and Applications ed N Ashgriz (Boston, MA: Springer US) pp 849–60
[87] Ohkawara Kakohki Co., Ltd. | Product Lineup
[88] Sono-Tek – Leadership through Innovation
[89] Jones, J. R., & Hench, L. L. (2003). Regeneration of trabecular bone using porous ceramics. Current Opinion in Solid State and Materials Science, 7(4-5), 301-307.
[90] Mourino, V., Cattalini, J. P., & Boccaccini, A. R. (2012). Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview. Advanced Drug Delivery Reviews, 64(3), 134-147
[91] Gupta N, Santhiya D, Murugavel S, Kumar A, Aditya A, Ganguli M, Gupta S 2017 Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass

QR CODE