簡易檢索 / 詳目顯示

研究生: 陳永欽
Yong-Cin Chen
論文名稱: 製備不同型態氧化亞銅微奈米粒子並應用於抗菌試驗及感測對硝基苯酚
Preparation of Different Morphology Cu2O for the Applications in Antibacterial and 4-Nitrophenol Sensing
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
魏大欽
Ta-Chin Wei
王勝仕
Steven S.-S. Wang
廖仲麒
Jung-Chi Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化亞銅抗菌試驗對硝基苯酚感測
外文關鍵詞: cuprous oxide (Cu2O), antibacterial tests, 4-nitrophenol sensing
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的為製備不同形狀及大小的氧化亞銅微奈米粒子,並將其應用於抗菌試驗及以電化學方式感測對硝基苯酚。在氧化亞銅製備方面,藉由使用兩種不同性質的界面活性劑: cetyltrimethylammonium bromide(CTAB)及sodium dodecyl sulfate(SDS),合成不同尺度大小的氧化亞銅粒子,並利用氨水調整pH值,控制微奈米粒子的形狀,分別製備立方體、球體、八面體、及星形的氧化亞銅粒子;在分析方法方面,利用SEM、TEM、XRD、UV/VIS spectrophotometer及ZetaPALS探討所製備微奈米粒子大小、顆粒形狀、及晶體結構。

    在抗菌實驗方面,將不同形狀及大小的氧化亞銅粒子,分別對於大腸桿菌及黃金葡萄球菌進行抗菌分析,以Agar盤之抑制圈,對氧化亞銅抗菌活性進行定性討論,並以UV/VIS spectrophotometer之量測,定量氧化亞銅抗菌能力,實驗結果顯示氧化亞銅對於革蘭式陽性的黃金葡萄球菌具有較佳的抗菌性,可以抑制將近90 %的黃金葡萄球菌生長量,及80 %的大腸桿菌生長量,不同的氧化亞銅微奈米粒子中,以多邊形狀的氧化亞銅粒子抗菌性較佳。

    於本論文最後一部分是將氧化亞銅粒子作為觸媒,應用於感測對硝基苯酚,電化學分析主要以循環伏安法以及計時安培法,研究氧化亞銅微奈米粒子催化對硝基苯酚的性能,並比較球形及八面體氧化亞銅粒子於電化學感測活性之差異。利用八面體氧化亞銅修飾於網印碳電極(o-Cu2O/SPE)偵測對硝基苯酚,可以得到線性範圍為10至100 μM(R2=0.999)及100至400 μM(R2=0.997),偵測靈敏度為0.393及0.173 μA μM-1 cm-2,偵測極限為0.5 μM;而利用球形氧化亞銅(s-Cu2O/SPE),可以得到較佳電化學感測活性,線性範圍為10至400 μM(R2=0.978),偵測靈敏度為0.408 μA μM-1 cm-2,偵測極限為0.005 μM;此外多層奈米碳管的修飾結合八面體氧化亞銅(o-Cu2O/MWCNTs/SPE),也可提升偵測線性範圍為150至1000 μM(R2=0.980),偵測靈敏度為0.459 μA μM-1 cm-2。


    In this thesis, different dimension and shape of cuprous oxide (Cu2O) particles were synthesized for the applications in antibacterial and sensing 4-nitrophenol. In the preparation of Cu2O, two types of surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), were used as templates to modulate the size of prepared Cu2O particles. Furthermore, ammonia water was used for adjusting the pH environment and to control the shape of particles including cubic, sphere, octahedral and star-like Cu2O. The physical characteristics of Cu2O particles were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), UV/VIS spectrophotometer and Zeta Potential Meter and Particle Size Analyzer (ZetaPALS).

    Antibacterial tests against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were performed by applying different morphology Cu2O particles that the qualitative analysis was facilitated by measuring inhibition zone on Agar plate and quantitative analysis by measuring the optical density of the bacteria cell solution using UV/VIS spectrophotometer. The results showed that Cu2O particles with the same shape showed better anti-S. aureus activity that the inhibition of the growth of 90 % of S. aureus and 80 % of E. coli was achieved. On the other hand, for Cu2O particles with similar size but with different morphology, the ones of multilateral revealed better antibacterial activity.

    In the last part of this thesis, Cu2O particles were applied to prepare the sensors for sensing 4-nitrophenol. The electrochemical analyses, mainly cyclic voltammetry and amperometry method, were applied to investigate the sensing performance using octahedral and spherical Cu2O particles. The optimized biosensor was prepared by modifying the electrode with octahedral Cu2O particles, which showed the 2 range of detection linear ranges from 10 to 100 μM (R2=0.999), and from 100 to 400 μM (R2=0.997) with the sensitivity of 0.393 and 0.173 μA μM-1 cm-2, respectively. The detection limit obtained for the resultant sensor is about 0.5 μM. On the other hand, the electrode using spherical Cu2O particles for the surface modification showed the detection linear range from 10 to 400 μM (R2=0.978) with a slightly higher sensitivity of 0.408 μA μM-1 cm-2 with lower detection limit of 0.005 μM. The difference for the sensitivities and detection limits were presumably due to the smaller size of Cu2O particles for the spherical ones than the multilateral ones. Moreover, the addition of multi-wall carbon nanotubes into the octahedral Cu2O also assisted the enhancement of current responses and showed the detection range from 150 to 1000 μM (R2=0.980) with the higher sensitivity of 0.459 μA μM-1 cm-2.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1前言 1 1.2 奈米科技之發展與應用 3 1.3 研究動機 5 第二章 文獻回顧 6 2.1奈米金屬材料 6 2.1.1 奈米材料之簡介 6 2.1.2金屬奈米材料之特性 8 2.1.3金屬奈米材料之製備 10 2.1.4奈米金屬顆粒之成長機制 14 2.1.5 CuO、Cu2O、Cu(OH)2奈米材料之發展與應用 16 2.2金屬氧化物於抗菌材料上之發展及其抗菌機制 18 2.2.1 金屬氧化物於抗菌材料上之發展 18 2.2.2 量化細菌生存力之方法比較[5] 19 2.2.3 金屬氧化物之抗菌機制 21 2.3以氧化亞銅奈米結構輔助對硝基苯酚感測 23 2.3.1感測器簡介 23 2.3.2生物感測器簡介 24 2.3.3電化學式生物感測器 28 2.3.4奈米金屬與多層奈米碳管於電化學生物感測器上之應用 30 2.3.5對硝基苯酚於電化學感測之文獻回顧 31 2.3.6 對硝基苯酚之電化學反應 35 第三章 實驗儀器與方法 37 3.1實驗設備 37 3.2實驗藥品與溶液配製 39 3.2.1實驗藥品 39 3.2.2藥品配製方法 41 3.3實驗方法 43 3.3.1 氧化亞銅微奈米粒子之合成方法 43 3.3.2抗菌試驗 44 3.3.3 對硝基苯酚感測器之製備 45 3.4 分析儀器與方法 46 3.4.1 場發射電子顯微鏡分析(FE-SEM) 46 3.4.2穿透式電子顯微鏡分析(TEM) 46 3.4.3 X光繞射分析(XRD) 46 3.4.4 紫外線/可見光分光光譜儀(UV-vis) 47 3.4.5 雷射界面電位分析儀暨粒徑分析儀(ZetaPALS) 47 3.4.6電化學分析裝置 48 第四章 結果與討論 52 4.1 製備氧化亞銅微奈米粒子與合成機構分析 52 4.1.1分析所製備氧化亞銅微奈米粒子之形狀及大小 (SEM、TEM) 53 4.1.2氧化亞銅微奈米粒子之粒徑分析 (ZetaPALS) 63 4.1.3 氧化亞銅微奈米粒子之晶體結構分析 (XRD、SAED) 64 4.1.4 氧化亞銅粒子之吸收光譜分析 66 4.1.5 微胞形成對於氧化亞銅粒子合成機制分析 68 4.2 不同形狀及大小的氧化亞銅粒子之抗菌性比較 71 4.2.1 不同形狀及大小的氧化亞銅粒子於大腸桿菌 (E. coli) 之抗菌性分析 ...........................................................71 4.2.2 不同形狀及大小的氧化亞銅粒子於黃金葡萄球菌 (S. aureus) 之抗菌性分析 74 4.2.3 氧化亞銅微奈米粒子抗菌機制之探討 77 4.3氧化亞銅粒子修飾電極應用於對硝基苯酚電化學感測 79 4.3.1 經氧氣電漿處理後網印碳電極表面之親疏水性分析 79 4.3.2 氧化亞銅、多層奈米碳管於電化學感測之最適化含量 81 4.3.3 對硝基苯酚工作溶液之最適化pH值 86 4.3.4 掃描圈數對於對硝基苯酚感測之影響 87 4.3.5 對硝基苯酚電化學氧化還原反應機構 88 4.3.6 對硝基苯酚電化學感測定量分析 90 4.3.7 不同形狀及大小的氧化亞銅微奈米粒子對於對硝基苯酚偵測極限之影響 95 4.3.8 感測電極之表面型態分析 96 4.3.9 八面體與球體氧化亞銅粒子之電化學活性比較 98 4.3.10 紫外可見光吸收定量對硝基苯酚 101 4.3.11 電活性物質干擾測試 103 第五章 結論與未來展望 104 第六章 參考文獻 106 附錄一 116

    1. Yao, J., M. Yang, and Y. Duan, Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chemical Reviews, 2014. 114(12): p. 6130-6178.
    2. Bunschoten, A., M.M. Welling, M.F. Termaat, M. Sathekge, and F.W.B. van Leeuwen, Development and Prospects of Dedicated Tracers for the Molecular Imaging of Bacterial Infections. Bioconjugate Chemistry, 2013. 24(12): p. 1971-1989.
    3. Smith, A.W., Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advanced Drug Delivery Reviews, 2005. 57(10): p. 1539-1550.
    4. Pissuwan, D., C.H. Cortie, S.M. Valenzuela, and M.B. Cortie, Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends in Biotechnology, 2010. 28(4): p. 207-213.
    5. Seil, J.T. and T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 2012. 7: p. 2767-2781.
    6. 袁秋英, 林志鍵, and 蔣墓琰, 生物感測器檢測環境汙染物之研發與應用. 農業科技與新知, 2009. 205.
    7. Alizadeh, T., M.R. Ganjali, P. Norouzi, M. Zare, and A. Zeraatkar, A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta, 2009. 79(5): p. 1197-1203.
    8. Devadas, B., M. Rajkumar, S.-M. Chen, and P.-C. Yeh, A novel voltammetric p-nitrophenol sensor based on ZrO2 nanoparticles incorporated into a multiwalled carbon nanotube modified glassy carbon electrode. Analytical Methods, 2014. 6(13): p. 4686-4691.
    9. Liu, Z., J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, and Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochemistry Communications, 2009. 11(7): p. 1365-1368.
    10. United States Environmental Protection Agency, Technology Transfer Network - Air Toxics Web Site.
    11. Chen, D. and A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 1998. 32(11): p. 3223-3234.
    12. 張立德, 第四次浪潮-奈米衝擊波. 中國經濟出版社, 2003.
    13. 吳程遠等人譯, Feynman, R.P., The Pleasure of Finding Things Out, "費曼的主張". 天下文化書坊, 2001: p. 155-190.
    14. Kubo, R., Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 1962. 17(6): p. 975-986.
    15. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司, 2005.
    16. Zhang, Q., K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 2014. 60(0): p. 208-337.
    17. Ren, J., W. Wang, S. Sun, L. Zhang, L. Wang, and J. Chang, Crystallography Facet-Dependent Antibacterial Activity: The Case of Cu2O. Industrial & Engineering Chemistry Research, 2011. 50(17): p. 10366-10369.
    18. Pang, H., F. Gao, and Q. Lu, Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009(9): p. 1076-1078.
    19. Azam, A., A.S. Ahmed, M. Oves, M.S. Khan, and A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 2012. 7: p. 3527-3535.
    20. Karlsson, H.L., J. Gustafsson, P. Cronholm, and L. Moller, Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicology Letters, 2009. 188(2): p. 112-118.
    21. Huang, C., W. Ye, Q. Liu, and X. Qiu, Dispersed Cu2O Octahedrons on h-BN Nanosheets for p-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2014. 6(16): p. 14469-14476.
    22. Zhai, W., F. Sun, W. Chen, Z. Pan, L. Zhang, S. Li, S. Feng, Y. Liao, and W. Li, Photodegradation of p-nitrophenol using octahedral Cu2O particles immobilized on a solid support under a tungsten halogen lamp. Applied Catalysis A: General, 2013. 454(0): p. 59-65.
    23. 林彥琇, 余政儒, and 曾韋龍, 金奈米材料於感測器之應用. 化學, 中華民國九十九年. 第六十八卷第一期.
    24. Gao, J., H. Gu, and B. Xu, Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts of Chemical Research, 2009. 42(8): p. 1097-1107.
    25. 裘性天 and 黃亭凱, 特殊形貌銅與銀奈米材料製備之簡介. 化學, 中華民國九十六年. 第六十五卷第一期.
    26. Sharma, P., S. Brown, G. Walter, S. Santra, and B. Moudgil, Nanoparticles for bioimaging. Advances in Colloid and Interface Science, 2006. 123–126(0): p. 471-485.
    27. Hasobe, T., H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles. Journal of the American Chemical Society, 2004. 127(4): p. 1216-1228.
    28. Wilson, R., The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008. 37(9): p. 2028-2045.
    29. 蔡宏營, 奈米科技概論與應用. 五南圖書出版股份有限公司, 2013.
    30. Lue, J.-T., A review of characterization and physical property studies of metallic nanoparticles. Journal of Physics and Chemistry of Solids, 2001. 62(9–10): p. 1599-1612.
    31. ZHANG, J.Z., Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface. ACCOUNTS OF CHEMICAL RESEARCH, 1997. 30: p. 423-429.
    32. Dayton, M.A., A.G. Ewing, and R.M. Wightman, Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Analytical Chemistry, 1980. 52(14): p. 2392-2396.
    33. Hernandez, J., J. Solla-Gullon, E. Herrero, A. Aldaz, and J.M. Feliu, Electrochemistry of Shape-Controlled Catalysts:  Oxygen Reduction Reaction on Cubic Gold Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(38): p. 14078-14083.
    34. Borgohain, K., J.B. Singh, M.V. Rama Rao, T. Shripathi, and S. Mahamuni, Quantum size effects in CuO nanoparticles. Physical Review B, 2000. 61(16): p. 11093-11096.
    35. Zhang, L., D.A. Blom, and H. Wang, Au–Cu2O Core–Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties. Chemistry of Materials, 2011. 23(20): p. 4587-4598.
    36. 王世敏, 許祖勘, and 傅晶, 奈米材料原理與製備. 五南出版社, 2004.
    37. 廖明隆, 界面化學與界面活性劑. 鼎文書局, 中華民國92年.
    38. Kunieda, H. and K. Aramaki, Correlation of HLB with Self-Organized Structure. JAPAN OIL CHEMISTS SOCIETY, 2000. 49: p. 1124.
    39. Liu, B. and H.C. Zeng, Mesoscale Organization of CuO Nanoribbons:  Formation of “Dandelions”. Journal of the American Chemical Society, 2004. 126(26): p. 8124-8125.
    40. Sun, S., X. Zhang, J. Zhang, L. Wang, X. Song, and Z. Yang, Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm, 2013. 15(5): p. 867-877.
    41. Xu, M., F. Wang, B. Ding, X. Song, and J. Fang, Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC Advances, 2012. 2(6): p. 2240-2243.
    42. Guan, X., L. Li, G. Li, Z. Fu, J. Zheng, and T. Yan, Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance. Journal of Alloys and Compounds, 2011. 509(7): p. 3367-3374.
    43. Zou, G., H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, Well-Aligned Arrays of CuO Nanoplatelets. The Journal of Physical Chemistry B, 2006. 110(4): p. 1632-1637.
    44. Li, Y., X.-Y. Yang, J. Rooke, G.V. Tendeloo, and B.-L. Su, Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2010. 348(2): p. 303-312.
    45. Vaseem, M., A. Umar, S.H. Kim, and Y.-B. Hahn, Low-Temperature Synthesis of Flower-Shaped CuO Nanostructures by Solution Process:  Formation Mechanism and Structural Properties. The Journal of Physical Chemistry C, 2008. 112(15): p. 5729-5735.
    46. Song, M.-K., S. Park, F.M. Alamgir, J. Cho, and M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports, 2011. 72(11): p. 203-252.
    47. Anandan, S., X. Wen, and S. Yang, Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics, 2005. 93(1): p. 35-40.
    48. Ito, T., H. Yamaguchi, K. Okabe, and T. Masumi, Single-crystal growth and characterization of Cu2O and CuO. Journal of Materials Science, 1998. 33(14): p. 3555-3566.
    49. Singh, D.P., N.R. Neti, A.S.K. Sinha, and O.N. Srivastava, Growth of Different Nanostructures of Cu2O (Nanothreads, Nanowires, and Nanocubes) by Simple Electrolysis Based Oxidation of Copper. The Journal of Physical Chemistry C, 2007. 111(4): p. 1638-1645.
    50. Lee, S., C.-W. Liang, and L.W. Martin, Synthesis, Control, and Characterization of Surface Properties of Cu2O Nanostructures. ACS Nano, 2011. 5(5): p. 3736-3743.
    51. LaGrow, A.P., L. Sinatra, A. Elshewy, K.-W. Huang, K. Katsiev, A.R. Kirmani, A. Amassian, D.H. Anjum, and O.M. Bakr, Synthesis of Copper Hydroxide Branched Nanocages and Their Transformation to Copper Oxide. The Journal of Physical Chemistry C, 2014. 118(33): p. 19374-19379.
    52. Lin, G., W. Jia, W. Lu, and L. Jiang, Copper hydroxide nano and microcrystal: Facile synthesis, shape evolution and their catalytic properties. Journal of Colloid and Interface Science, 2011. 353(2): p. 392-397.
    53. Park, S.-H. and H.J. Kim, Unidirectionally Aligned Copper Hydroxide Crystalline Nanorods from Two-Dimensional Copper Hydroxy Nitrate. Journal of the American Chemical Society, 2004. 126(44): p. 14368-14369.
    54. Pal, S., Y.K. Tak, and J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007. 73: p. 1712-1720.
    55. Stoimenov, P.K., R.L. Klinger, G.L. Marchin, and K.J. Klabunde, Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir, 2002. 18(17): p. 6679-6686.
    56. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
    57. Applerot, G., J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin, Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small, 2012. 8(21): p. 3326-3337.
    58. Li, Q., S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, and P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008. 42(18): p. 4591-4602.
    59. Singh, D.P. and N. Ali, Synthesis of TiO2 and CuO Nanotubes and Nanowires. Science of Advanced Materials, 2010. 2: p. 295-335.
    60. Gabbay, J., G. Borkow, J. Mishal, E. Magen, R. Zatcoff, and Y. Shemer-Avni, Copper Oxide Impregnated Textiles with Potent Biocidal Activities. Journal of Industrial Textiles, 2006. 35: p. 323-335.
    61. Perelshtein, I., G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, and A. Gedanken, CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009. 204(1–2): p. 54-57.
    62. Abou Neel, E.A., I. Ahmed, J. Pratten, S.N. Nazhat, and J.C. Knowles, Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials, 2005. 26(15): p. 2247-2254.
    63. Heinlaan, M., A. Ivask, I. Blinova, H.-C. Dubourguier, and A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008. 71(7): p. 1308-1316.
    64. Olivares, M., F. Pizarro, H. Speisky, B. Lonnerdal, and R. Uauy, Copper in Infant Nutrition: Safety of World Health Organization Provisional Guideline Value for Copper Content of Drinking Water. Journal of Pediatric Gastroenterology & Nutrition, 1998. 26(3): p. 251-257.
    65. Gunawan, C., W.Y. Teoh, C.P. Marquis, and R. Amal, Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano, 2011. 5(9): p. 7214-7225.
    66. Ren, G., D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 2009. 33(6): p. 587-590.
    67. Aruoja, V., H.-C. Dubourguier, K. Kasemets, and A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of The Total Environment, 2009. 407(4): p. 1461-1468.
    68. Rousk, J., K. Ackermann, S.F. Curling, and D.L. Jones, Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities. PloS One, 2012. 7(3): p. e34197.
    69. Horie, M., K. Fujita, H. Kato, S. Endoh, K. Nishio, L.K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, Y. Hagihara, E. Niki, Y. Yoshida, and H. Iwahashi, Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics, 2012. 4(4): p. 350-360.
    70. Dey, K.K., A. Kumar, R. Shanker, A. Dhawan, M. Wan, R.R. Yadav, and A.K. Srivastava, Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices. RSC Advances, 2012. 2(4): p. 1387-1403.
    71. 黃炳照, 固態電解質電化學氣體感測器. 化學, 中華民國九十年. 第五十九卷第二期: p. 207-217.
    72. 黃炳照 and 莊睦賢, 電化學感測器. 化工技術, 1999. 第七卷(第二期).
    73. 吳宗遠, 生物感測器:原理與應用之簡介. 化學, 中華民國一百零二年. 第七十一卷第三期: p. 253-264.
    74. Castillo, J., S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, and E. Csoregi, Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical, 2004. 102(2): p. 179-194.
    75. 鄭建業, 張國鍾, and 高啟瀛, 葡萄糖與尿酸酵素電極生物感測器. 化學. 第七十一卷第三期: p. 195-203.
    76. Thevenot, D.R., K. Toth, R.A. Durst, and G.S. Wilson, Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131.
    77. 林聖富, 核酸適合體式光學波導共振生物感測器於凝血酶之檢測. 國立中央大學光電科學與工程學系碩士班碩士論文, 2009.
    78. 蘇宏基, 化學生物感測器講義. 東華大學化學系.
    79. Wang, J., Electrochemical Glucose Biosensors. Chemical Reviews, 2007. 108(2): p. 814-825.
    80. Cass, A.E.G., G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, and A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984. 56(4): p. 667-671.
    81. Degani, Y. and A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. The Journal of Physical Chemistry, 1987. 91(6): p. 1285-1289.
    82. Park, S., H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006. 556(1): p. 46-57.
    83. Wang, J., Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis, 2001. 13(12): p. 983-988.
    84. Shichiri, M., Y. Yamasaki, R. Kawamori, N. Hakui, and H. Abe, WEARABLE ARTIFICIAL ENDOCRINE PANCREAS WITH NEEDLE-TYPE GLUCOSE SENSOR. The Lancet, 1982. 320(8308): p. 1129-1131.
    85. Luo, L.-q., X.-l. Zou, Y.-p. Ding, and Q.-s. Wu, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B: Chemical, 2008. 135(1): p. 61-65.
    86. Wang, J., Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis, 2005. 17(1): p. 7-14.
    87. Casella, I.G. and M. Contursi, The Electrochemical Reduction of Nitrophenols on Silver Globular Particles Electrodeposited under Pulsed Potential Conditions. Journal of The Electrochemical Society, 2007. 154: p. D697-D702.
    88. Chu, L., L. Han, and X. Zhang, Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. Journal of Applied Electrochemistry, 2011. 41(6): p. 687-694.
    89. Tang, Y., R. Huang, C. Liu, S. Yang, Z. Lu, and S. Luo, Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Analytical Methods, 2013. 5(20): p. 5508-5514.
    90. Gu, Y.-e., Y. Zhang, F. Zhang, J. Wei, C. Wang, Y. Du, and W. Ye, Investigation of photoelectrocatalytic activity of Cu2O nanoparticles for p-nitrophenol using rotating ring-disk electrode and application for electrocatalytic determination. Electrochimica Acta, 2010. 56(2): p. 953-958.
    91. Yin, H., Y. Zhou, S. Ai, X. Liu, L. Zhu, and L. Lu, Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchimica Acta, 2010. 169(1-2): p. 87-92.
    92. Huang, W., C. Yang, and S. Zhang, Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Analytical and Bioanalytical Chemistry, 2003. 375(5): p. 703-707.
    93. Li, J., D. Kuang, Y. Feng, F. Zhang, Z. Xu, and M. Liu, A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. Journal of Hazardous Materials, 2012. 201–202(0): p. 250-259.
    94. Yang, C., Electrochemical Determination of 4-Nitrophenol Using a Single-Wall Carbon Nanotube Film-Coated Glassy Carbon Electrode. Microchimica Acta, 2004. 148(1-2): p. 87-92.
    95. Hu, S., C. Xu, G. Wang, and D. Cui, Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta, 2001. 54(1): p. 115-123.
    96. Arvinte, A., M. Mahosenaho, M. Pinteala, A.-M. Sesay, and V. Virtanen, Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchimica Acta, 2011. 174(3-4): p. 337-343.
    97. Sokolova, R., M. Hromadova, and L. Pospišil, Heterogeneous electron transfer of pesticides Current trends and applications. Transworld Research Network, 2008.
    98. Gou, L. and C.J. Murphy, Solution-Phase Synthesis of Cu2O Nanocubes. Nano Letters, 2002. 3(2): p. 231-234.
    99. Zhang, H., C. Shen, S. Chen, Z. Xu, F. Liu, J. Li, and H. Gao, Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005. 16: p. 267-272.
    100. Li, Y., B. Tan, and Y. Wu, Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures. Chemistry of Materials, 2007. 20(2): p. 567-576.
    101. 胡啟章, 電化學原理與方法. 五南圖書出版公司, 2002: p. 90-96.
    102. Bard, A.J. and L.R. Faulkner, Electrochemical methods: Fundamentals and applications. John Wiley & Sons: New York, 2000: p. 226-227.
    103. Myshkin, A.E., V.S. Konyaeva, K.Z. Gumargalieva, and Y.V. Moiseev, Oxidation of Ascorbic Acid in the Presence of Nitrites. Journal of Agricultural and Food Chemistry, 1996. 44(10): p. 2948-2950.
    104. Das, N.C., H. Cao, H. Kaiser, G.T. Warren, J.R. Gladden, and P.E. Sokol, Shape and Size of Highly Concentrated Micelles in CTAB/NaSal Solutions by Small Angle Neutron Scattering (SANS). Langmuir, 2012. 28(33): p. 11962-11968.
    105. Duplatre, G., M.F. Ferreira Marques, and M. da Graca Miguel, Size of Sodium Dodecyl Sulfate Micelles in Aqueous Solutions as Studied by Positron Annihilation Lifetime Spectroscopy. The Journal of Physical Chemistry, 1996. 100(41): p. 16608-16612.
    106. Yao, W.-T., S.-H. Yu, Y. Zhou, J. Jiang, Q.-S. Wu, L. Zhang, and J. Jiang, Formation of Uniform CuO Nanorods by Spontaneous Aggregation:  Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid−Liquid Phase Arc Discharge Process. The Journal of Physical Chemistry B, 2005. 109(29): p. 14011-14016.
    107. Yu, H., J. Yu, S. Liu, and S. Mann, Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chemistry of Materials, 2007. 19(17): p. 4327-4334.
    108. 汪信 and 劉孝恒, 奈米材料學. 滄海圖書, 2010.
    109. 林啟萬, 張家禎, 莊琮亮, 王大欣, 呂慧歆, and 劉建昇, 表面電漿子共振生物感測器之最新發展. 化學, 中華民國一百年. 第六十九卷(第三期): p. 211-221.
    110. Kuo, C.H., C.H. Chen, and M.H. Huang, Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials, 2007. 17(18): p. 3773-3780.
    111. Faustino, C.M.C., C.S. Serafim, I.N. Ferreira, M.A. Branco, A.R.T. Calado, and L. Garcia-Rio, Mixed Micelle Formation between an Amino Acid-Based Anionic Gemini Surfactant and Bile Salts. Industrial & Engineering Chemistry Research, 2014. 53(24): p. 10112-10118.
    112. Javadian, S., V. Ruhi, A. Heydari, A. Asadzadeh Shahir, A. Yousefi, and J. Akbari, Self-Assembled CTAB Nanostructures in Aqueous/Ionic Liquid Systems: Effects of Hydrogen Bonding. Industrial & Engineering Chemistry Research, 2013. 52(12): p. 4517-4526.
    113. Kile, D.E. and C.T. Chiou, Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology, 1989. 23(7): p. 832-838.
    114. Guo, Y., C. Cheng, J. Wang, X. Jin, B. Liu, Z. Wang, J. Gao, and P. Kang, Oxidation–extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(5): p. 1099-1104.
    115. Lee, S.-H., H.-Y. Fang, and W.-C. Chen, Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sensors and Actuators B: Chemical, 2006. 117(1): p. 236-243.
    116. Kuroda, K., T. Ishida, and M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. Journal of Molecular Catalysis A: Chemical, 2009. 298(1–2): p. 7-11.
    117. Yuan, C.-J., C.-L. Hsu, S.-C. Wang, and K.-S. Chang, Eliminating the Interference of Ascorbic Acid and Uric Acid to the Amperometric Glucose Biosensor by Cation Exchangers Membrane and Size Exclusion Membrane. Electroanalysis, 2005. 17(24): p. 2239-2245.
    118. 土壤污染管制標準. 行政院環保署, 中華民國100年.
    119. Ricci, F., A. Amine, G. Palleschi, and D. Moscone, Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors and Bioelectronics, 2003. 18(2–3): p. 165-174.

    無法下載圖示 全文公開日期 2020/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE