簡易檢索 / 詳目顯示

研究生: 韋經智
Ching-Chih Wei
論文名稱: 新式五軸加工規劃流程之基於視覺化空間 計算最短軸向距離之工件夾持位置
A Novel Five-axis Machining Process with Visualized Space to Optimize the Workpiece Setup Position for the Shortest Axial Movements
指導教授: 李維楨
Wei-Chen Lee
口試委員: 蔡曜陽
Yao-Yang Tsai
李貫銘
Kuan-Ming Li
鍾俊輝
Chun-Hui Chung
林清安
Ching-An Lin
石伊蓓
Yi-Pei Shih
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 123
中文關鍵詞: 五軸加工工件夾持空間最佳夾持位置最短軸向移動距離夾治具設計空間
外文關鍵詞: Five-axis machining, Setup workspace, Optimal setup position, Shortest axial movements, Fixture designable space
相關次數: 點閱:344下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的 8 第二章 研究方法 12 2.1 五軸工具機座標轉換 12 2.2 計算可夾持空間 18 2.2.1 建構刀具路徑五維空間 18 2.2.2 計算初始可夾持空間 21 2.2.3 計算機臺干涉區域 24 2.2.3.1 依據刀具底面幾何計算干涉面 27 2.2.3.2 依據刀具側面幾何計算干涉區域 33 2.2.4 計算最終可夾持空間 35 2.3 最佳化問題與目標函數特性 38 2.3.1 定義最短距離的最佳化方程式 38 2.3.2 最佳化目標函數特性 41 2.4 最佳化夾持位置方法與流程 43 2.5 計算夾治具可設計空間 45 第三章 實驗設備與規格 49 第四章 演算法分析示例 52 4.1 計算可夾持空間 52 4.2 計算最佳夾持位置 59 4.3 計算夾具設計空間 62 第五章 案例分析與討論 65 5.1 案例一: 定軸加工 66 5.1.1 可夾持空間計算與驗證 66 5.1.2 夾具可設計空間計算與驗證 71 5.2 案例二: 四軸加工 73 5.2.1 可夾持空間計算與驗證 73 5.2.2 夾具可設計空間計算與驗證 79 5.3 案例三: 五軸加工 80 5.3.1 可夾持空間計算與驗證 80 5.3.2 最佳夾持位置計算與驗證 86 5.3.3 夾具可設計空間計算與驗證 87 第六章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 89 參考文獻 91 附錄1 刀具角度矩陣計算虛擬碼 94 附錄2 工件夾持位置之最佳化程式虛擬碼 95 附錄3 NX二次開發程式 96 附錄4 工件夾持位置計算程式人機介面 97 4.1 刀具路徑輸入介面 98 4.2刀具幾何輸入介面 99 4.3最佳化計算參數設定介面 100 4.4五軸加工機臺幾何輸入介面 101 4.5工件可夾持空間結果檢視介面 103 4.6夾具可設計空間結果檢視介面 104

    [1] I. Scandiffio, A. E. Diniz, and A. F. de Souza, "The influence of tool-surface contact on tool life and surface roughness when milling free-form geometries in hardened steel," The International Journal of Advanced Manufacturing Technology, vol. 92, no. 1, pp. 615-626, 2017/09/01 2017.
    [2] S. Koprowski, E. Uhlmann, and W. Weingaertner, "Influence of tilt and lead angles on 5-axis grinding with spherical mounted points," Production Engineering, vol. 12, no. 3, pp. 449-455, 2018/06/01 2018.
    [3] J. Wang, M. Luo, K. Xu, and K. Tang, "Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces," Journal of Manufacturing Science and Engineering, vol. 141, no. 3, pp. 031001-031001-15, 2019.
    [4] H. Kull Neto, A. E. Diniz, and R. Pederiva, "The influence of cutting forces on surface roughness in the milling of curved hardened steel surfaces," The International Journal of Advanced Manufacturing Technology, vol. 84, no. 5, pp. 1209-1218, 2016/05/01 2016.
    [5] X. Chen, J. Zhao, and W. Zhang, "Influence of milling modes and tool postures on the milled surface for multi-axis finish ball-end milling," The International Journal of Advanced Manufacturing Technology, vol. 77, no. 9, pp. 2035-2050, 2015/04/01 2015.
    [6] T. C. Woo, "Visibility maps and spherical algorithms," Computer-Aided Design, vol. 26, no. 1, pp. 6-16, 1994.
    [7] T. C. Woo and B. F. von Turkovich, "Visibility Map and Its Application to Numerical Control," CIRP Annals - Manufacturing Technology, vol. 39, no. 1, pp. 451-454, 1990.
    [8] H. K. Chen, S. J. Hu, and T. C. Woo, "Visibility analysis and synthesis for assembly fixture certification using theodolite systems," Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 123, no. 1, pp. 83-89, 2001.
    [9] L.-L. Chen and T. C. Woo, "Computational geometry on the sphere with application to automated machining," in American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1990, vol. 23, pp. 165-174.
    [10] L. L. Chen, S. Y. Chou, and T. C. Woo, "Partial visibility for selecting a parting direction in mold and die design," Journal of Manufacturing Systems, vol. 14, no. 5, pp. 319-330, 1995.
    [11] M. M. r. Isnaini, R. Sato, and K. Shirase, "Workpiece Setup Simulation based on Machinable Space of Five-axis Machining Centers," Procedia CIRP, vol. 14, pp. 257-262, 2014/01/01/ 2014.
    [12] N. Wang and K. Tang, "Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath," Computer-Aided Design, vol. 39, no. 10, pp. 841-852, 10// 2007.
    [13] P. Hu, K. Tang, and C.-H. Lee, "Global obstacle avoidance and minimum workpiece setups in five-axis machining," Computer-Aided Design, vol. 45, no. 10, pp. 1222-1237, 10// 2013.
    [14] 曾明揚, "曲面加工多軸銑床構型與行程範圍之初步評估系統," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2007.
    [15] 羅宇智, "應用可視錐與向量分析於車銑複合加工可製造性初步評估系統之發展," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2008.
    [16] 張俊毅, "於多軸曲面加工時以可視錐分析做工具機及刀具尺寸限制之研究," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2003.
    [17] 陳耀乾, "以可視錐分析工件夾持方位及多軸工具機構型之研究," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2002.
    [18] R.-S. Lee, Y.-H. Lin, M.-Y. Tseng, and W.-S. Wu, "Evaluation of workpiece orientation and configuration of multi-axis machine tool using visibility cone analysis," International Journal of Computer Integrated Manufacturing, vol. 23, no. 7, pp. 630-639, 2010/07/01 2010.
    [19] T. Saito and T. Takahashi, "Comprehensible rendering of 3-D shapes," (in English), 17th Annual ACM Conference on Computer Graphics and Interactive Techniques - SIGGRAPH '90, vol. 24, no. 4, pp. 197-206, 1990.
    [20] T. Saito and T. Takahashi, "NC machining with G-buffer method," SIGGRAPH Comput. Graph., vol. 25, no. 4, pp. 207-216, 1991.
    [21] J. A. Carter, T. M. Tucker, and T. R. Kurfess, "3-Axis CNC Path Planning Using Depth Buffer and Fragment Shader," Computer-Aided Design and Applications, vol. 5, no. 5, pp. 612-621, 2008.
    [22] M. Balasubramaniam, P. Laxmiprasad, S. Sarma, and Z. Shaikh, "Generating 5-axis NC roughing paths directly from a tessellated representation," Computer-Aided Design, vol. 32, no. 4, pp. 261-277, 2000.
    [23] M. Balasubramaniam, S. E. Sarma, and K. Marciniak, "Collision-free finishing toolpaths from visibility data," Computer-Aided Design, vol. 35, no. 4, pp. 359-374, 2003.
    [24] W. Anotaipaiboon, S. S. Makhanov, and E. L. J. Bohez, "Optimal setup for five-axis machining," International Journal of Machine Tools and Manufacture, vol. 46, no. 9, pp. 964-977, 2006.
    [25] Z. Lin, J. Fu, H. Shen, and W. Gan, "On the workpiece setup optimization for five-axis machining with RTCP function," The International Journal of Advanced Manufacturing Technology, vol. 74, no. 1-4, pp. 187-197, 2014.
    [26] D. Shaw and G.-Y. Ou, "Reducing and axes movement of a 5-axis AC type milling machine by changing the location of the work-piece," Computer-Aided Design, vol. 40, no. 10-11, pp. 1033-1039, 2008.
    [27] X. Pessoles, Y. Landon, S. Segonds, and W. Rubio, "Optimisation of workpiece setup for continuous five-axis milling: application to a five-axis BC type machining centre," The International Journal of Advanced Manufacturing Technology, vol. 65, no. 1-4, pp. 67-79, 2012.
    [28] K. Xu and K. Tang, "Optimal Workpiece Setup for Time-Efficient and Energy-Saving Five-Axis Machining of Freeform Surfaces," Journal of Manufacturing Science and Engineering, vol. 139, no. 5, pp. 051003-051003-16, 2016.
    [29] 歐冠吟, "五軸工具機之夾具設計與改良," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2005.
    [30] R. S. Lee and C. H. She, "Developing a postprocessor for three types of five-axis machine tools," The International Journal of Advanced Manufacturing Technology, vol. 13, no. 9, pp. 658-665, 1997/09/01 1997.
    [31] Y. H. Jung, D. W. Lee, J. S. Kim, and H. S. Mok, "NC post-processor for 5-axis milling machine of table-rotating/tilting type," Journal of Materials Processing Technology, vol. 130-131, pp. 641-646, 2002/12/20/ 2002.
    [32] 林子寬, "以球面雙圓法推導五軸加工之旋轉角通用公式," 博士, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
    [33] J. E. Bresenham, "Algorithm for computer control of a digital plotter," IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.
    [34] M. Shinya and M.-C. Forgue, "Interference detection through rasterization," The Journal of Visualization and Computer Animation, vol. 2, no. 4, pp. 132-134, 1991.
    [35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
    [36] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge university press, 2018.
    [37] A. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, in Engineering Optimization:Methods and Applications, Second Edition: John Wiley & Sons, Inc., 2007.
    [38] W. Lee and C. Wei, "Visualization of the Setup Location of a Workpiece for Five-axis Machining," Journal of Advanced Mechanical Design, Systems, and Manufacturing (Summitted), 2019.

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE