簡易檢索 / 詳目顯示

研究生: 柳洋亦
Yang-Yi Liu
論文名稱: 氮化鎵雙波段光偵測器
A GaN-based dual-band photodetector
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 葉秉慧
Ping-hui Yeh
張守進
Shoou-Jinn Chang
徐世祥
Shih-Hsiang Hsu
蘇忠傑
JUNG-CHIEH SU
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 氮化鎵光偵測器雙波段矽擴散
外文關鍵詞: GaN, dual-band, photodetector, si-diffusion
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文我們製作了雙波段光偵測器(dual-band photodetector, DBPD)並以雙光源驗證其可行性。此光偵測器是以一般商用的 GaN-based LED磊晶片為基底,並搭配我們實驗室有專利的矽擴散製程,將原先的p-i-n junction結構反轉成n-p-i-n結構,此結構可視為兩個背對背連接的二極體,並透過厚的電子阻擋層(EBL)防止二極體之間電子的穿越,由於PN接面材料與能隙的不同,這兩個二極體具有不同的吸收光譜,實現了具有雙波段偵測特性的光偵測器。兩光偵測器分別為針對短波段入射光吸收的PDF及可吸收長波段入射光和未被PDF吸收的短波段入射光的PDS,在維持低暗電流密度的同時,可選擇性地驅動不同的二極體來實現雙波段的量測,以區分較有害的紫外線光強度與近紫外線/藍光的光強度。
該元件具有良好的暗電流特性,在0 V到4 V的偏壓下PDF及PDS量測到的最大暗電流分別為61.62 pA、80.76 pA,換算暗電流密度分別為34.93 nA/cm2、25.57 nA/cm2,並且透過驅動不同的光偵測器可以測量320 nm到375 nm或320 nm到455 nm的波段。在3 V偏壓下,PDF在入射光波長334 nm具有38.65%的峰值外部量子效率及104.1 mA/W的峰值響應率;PDS在入射光波長338 nm具有34.55%的峰值外部量子效率及94.18 mA/W的峰值響應率。透過我們的驗證實驗也證明了如果已知一寬頻光源,波長在320-455 nm偵測範圍,我們能透過比較PDF及PDS所偵測到的光電流來計算出此光源在320~375 nm與375~450 nm兩波段分別的平均光強度,當然若此光源頻寬很窄又靠近截止波長則較不準,此時若已知此光源的放射波長,可直接用此波長響應率來計算其光強度。


In this work, a GaN-based dual-band photodetector (DBPD) was fabricated and its dual-band detecting function was verified experimentally. Based on a commercial GaN LED wafer, the photodetector was fabricated with our patented silicon diffusion process to convert the original structure (p-i-n) into an n-p-i-n structure which can be considered as a structure of an n-p diode back-to-back connected to a p-i-n diode. The thick electron blocking layer in the LED epitaxial structure that prevents electron spilling from the multiple quantum wells, also prevents electron transport between the two diodes. When connecting the top n-p diode with a reverse bias, it served as a photodiode detecting ultraviolet (UV) light with a cut-off wavelength of approximately 375 nm. When connecting the bottom p-i-n diode with a reverse bias, it served as a photodiode detecting both UV and blue light with a cut-off wavelength of approximately 450 nm which can be changed by changing the bandgap of the active layer used in the LED structure.
The DBPD has excellent electrical characteristics and dual-band spectral responses. The dark current density of the top and bottom photodiodes at 4 V reverse bias were 34.93 nA/cm¬2 and 25.57 nA/cm2, respectively. When reverse biased at 3 V, the top photodiode has a peak external quantum efficiency (EQE) of 38.65% and responsivity of 104.1 mA/W at wavelength 334 nm; in turn, the bottom photodiode has a peak EQE of 34.55% and responsivity of 94.18 mA/W at wavelength 338 nm.
From the results of our verification experiment, we proved that if a board-band light source with wavelengths within the range of 320~450nm, we can distinguish and obtain the average light intensities in the two ranges (320~375nm and 375~450nm), respectively, by comparing the photocurrents of the top and bottom photodiodes. Note that the result may be inaccurate if the source’s spectrum is narrow and close to the cutoff wavelengths. Besides, if the source’s emission spectrum is well known, we can directly use the responsivity to calculate its intensity.

摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xiv 第一章 緒論 1 第二章 光偵測器理論基礎 18 2.1 光偵測器工作原理 18 2.2 光偵測器架構分類 21 2.2.1 p-n接面光電二極體 21 2.2.2 p-i-n接面光電二極體 23 2.2.3 蕭基位障光電二極體 26 2.2.4 雪崩型光電二極體 28 2.2.5 異質接面光電二極體 31 2.2.6 光電晶體 33 2.3 光偵測器檢測參數 35 2.3.1 量子效率(Quantum Efficiency, QE) 35 2.3.2 響應率(Responsivity, R) 38 2.3.3 響應速度(Response Speed) 38 2.3.4 拒斥比(Rejection Ratio) 39 2.3.5 雜訊等效功率(Noise Equivalent Power, NEP) 39 2.3.6 歸一化檢測率(normalized detectivity, D*) 40 第三章 元件設計與儀器介紹 41 3.1 光偵測器元件設計 41 3.2 元件製程 42 3.2.1 活化製程(Activation) 43 3.2.2 絕緣製程(Isolation) 44 3.2.3 高台圖型製程(Mesa) 46 3.2.4 矽擴散製程(Silicon diffusion) 47 3.2.5 二氧化矽絕緣層沉積 50 3.2.6 ITO透明導電層沉積 50 3.3 製程儀器介紹 52 3.3.1 電漿增強式化學氣相沉積(Plasma-enhanced chemical vapor deposition, PECVD) 52 3.3.2 旋轉塗佈機(Spin coater) 53 3.3.3 光罩對準機(Mask aligner) 54 3.3.4 感應耦合電漿反應式離子蝕刻機(Inductively-coupled plasma reactive ion etching, ICP-RIE) 56 3.3.5 電子束蒸鍍機(E-beam evaporator) 58 3.3.6 快速升溫退火爐(Rapid thermal annealing system, RTA) 58 3.3.7 射頻濺鍍機(Radio frequency sputter, RF sputter) 59 3.4 量測儀器介紹 62 3.4.1 電源供應器(Source Meter) 62 3.4.2 薄膜厚度輪廓測度儀(Alpha step) 63 3.4.3 高解析度數位萬用電錶 64 3.4.4光電轉換效率量測系統(Incident photon-to-electron conversion efficiency, IPCE) 65 3.4.5 驗證光源(source) 67 第四章 結果與討論 68 4.1雙波段光偵測器量測結果與討論 68 4.1.1 氮化鎵雙波段光偵測器暗電流密度量測 69 4.1.2 氮化鎵雙波段光偵測器在不同偏壓下之響應率 71 4.1.3 氮化鎵雙波段光偵測器在不同偏壓下之外部量子效率 76 4.2 氮化鎵雙波段光偵測器驗證實驗之結果與討論 78 4.2.1驗證實驗架構 78 4.2.2 驗證實驗- 光電流量測 81 4.2.3 驗證實驗的測試光源所對應之平均響應率 86 4.2.4 驗證實驗-光強度計算 88 4.2.5 驗證結果 90 第五章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 94 參考文獻 96

[1] P. Sandvik, D. Brown, J. Fedison, K. Matocha, and J. Kretchmer, “Dual-SiC Photodiode Devices for Simultaneous Two-Band Detection,” Journal of The Electrochemical Society, vol. 152, no. 3, 2005.
[2] Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, C. Z. Gu, and X. L. Du, “Dual-band MgZnO ultraviolet photodetector integrated with Si,” Applied Physics Letters, vol. 102, no. 15, 2013.
[3] R. Singh, S. Jit, and S. Tripathi, “MoS2, rGO, and CuO Nanocomposite-Based High Performance UV-Visible Dual-Band Photodetectors,” IEEE Photonics Technology Letters, vol. 33, no. 2, pp. 93-96, 2021.
[4] K. Young-Jin, L. Chang-Ju, K. Do-kywn, and H. Sung-Ho, “Dual-band responsivity of AlGaN/GaN MSM UV photodiode,” in 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), 2012, pp. 1-2.
[5] Y. Zhao, J.-H. Zang, X. Yang, X.-X. Chen, Y.-C. Chen, K.-Y. Li, L. Dong, and C.-X. Shan, “Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3,” Chinese Physics B, vol. 30, no. 7, 2021.
[6] X. H. Xie, Z. Z. Zhang, C. X. Shan, H. Y. Chen, and D. Z. Shen, “Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction,” Applied Physics Letters, vol. 101, no. 8, 2012.
[7] R. Singh, and S. Tripathi, “Low Intensity UV Light Detection by Al2O3 Separated MoS2/CuO Junction,” IEEE Photonics Technology Letters, vol. 33, no. 24, pp. 1427-1430, 2021.
[8] J. D. Hwang, and G. S. Lin, “Single- and dual-wavelength photodetectors with MgZnO/ZnO metal-semiconductor-metal structure by varying the bias voltage,” Nanotechnology, vol. 27, no. 37, pp. 375502, Sep 16, 2016.
[9] E. T. Simola, A. De Iacovo, J. Frigerio, A. Ballabio, A. Fabbri, G. Isella, and L. Colace, “Voltage-tunable dual-band Ge/Si photodetector operating in VIS and NIR spectral range,” Opt Express, vol. 27, no. 6, pp. 8529-8539, Mar 18, 2019.
[10] B. Gao, H. Liu, J. Fan, and S. Wang, “AlyGa1-yN/AlxGa1-xN/GaN Double-heterostructure Detector With Three Ultraviolet Spectral Band Responses,” IEEE Transactions on Electron Devices, vol. 58, no. 12, pp. 4290-4296, 2011.
[11] M. Yang, M. Chong, D. Zhao, X. Wang, Y. Su, J. Sun, and X. Sun, “Back-illuminated AlxGa1−xN-based dual-band solar-blind ultraviolet photodetectors,” Journal of Semiconductors, vol. 35, no. 6, 2014.
[12] J. Sun, D. Jiang, and F. Zhang, “Control of dual ultraviolet band flexible ultraviolet photodetector by piezo-phototronic effect,” Journal of Luminescence, vol. 232, 2021.
[13] Y. Chen, X. Zhou, Z. Zhang, G. Miao, H. Jiang, Z. Li, and H. Song, “Dual-band solar-blind UV photodetectors based on AlGaN/AlN superlattices,” Materials Letters, vol. 291, 2021.
[14] S. Aslam, L. Miko, C. Stahle, D. Franz, D. Pugel, B. Guan, J. P. Zhang, and R. Gaska, “Dual-band deep ultraviolet AlGaN photodetectors,” Electronics Letters, vol. 43, no. 24, 2007.
[15] G. Ariyawansa, M. B. M. Rinzan, M. Alevli, M. Strassburg, N. Dietz, A. G. U. Perera, S. G. Matsik, A. Asghar, I. T. Ferguson, H. Luo, A. Bezinger, and H. C. Liu, “GaN∕AlGaN ultraviolet/infrared dual-band detector,” Applied Physics Letters, vol. 89, no. 9, 2006.
[16] J. Kang, X. Rong, Q. Li, X. Wang, H. Gong, and J. Lu, “Observing near-infrared/ultraviolet responses within GaN/AlN superlattice for dual-band detection,” in AOPC 2020: Infrared Device and Infrared Technology, 2020.
[17] B. Kippelen, X. Ma, X. Li, Y. Jiang, X. Feng, M. Pu, J. Feng, G. Cao, J. Guo, J. Wang, and Y. Hu, “Realization of erythemal UV detector using antiparallel connection of the two GaN based photodiodes,” in 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing and Imaging, 2019.
[18] S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 μm,” Applied Physics Letters, vol. 100, no. 18, 2012.
[19] S. Jiao, D. Wang, F. Guo, J. Wang, H. Li, and L. Zhao, “Demonstration Of GaN/AlGaN Heterojunction For Dual Band Detection,” AIP Conference Proceedings, vol. 1399, no. 1, pp. 149-150, 2011.
[20] F. Xie, H. Lu, D. Chen, F. Ren, R. Zhang, and Y. Zheng, “Bias-Selective Dual-Operation-Mode Ultraviolet Schottky-Barrier Photodetectors Fabricated on High-Resistivity Homoepitaxial GaN,” IEEE Photonics Technology Letters, vol. 24, no. 24, pp. 2203-2205, 2012.
[21] "Thorlabs," 05, 2022; https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=285.
[22] "Roithner Lasertechnik(Austria)," 05, 2022; http://www.roithner-laser.com/pd_uv.html.
[23] "Ifw optronics (Germany)," 05, 2022; https://www.ifw-optronics.de/english/aboutus/.
[24] "Genicom Co. (Korea)," 05, 2022; http://www.geni-uv.com/.
[25] "ORH," 06, 2022; https://www.orc.co.jp/products/ja/uv-measuring/uv-led-01-cs01.html.
[26] 許登坡, 「氮化鎵光電晶體之研發」,國立台灣科技大學電子工程所碩士學位論文, 2016.
[27] S. O. Kasap, 光電半導體元件 Optoelectronics and Photonics Principles and Practices, 台北: 全威圖書有限公司, 2006.
[28] 劉博文, 光電元件導論, 台北: 全威圖書有限公司, 2005.
[29] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Applied Physics Letters, vol. 71, no. 18, pp. 2572-2574, 1997.
[30] T. Li, D. J. H. Lambert, A. L. Beck, C. Collins, B. Yang, M. Wong, R. D. Dupuis, and J. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,” Electronics Letters, vol. 36, pp. 1581-1583, 10/01, 2000.
[31] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997.
[32] S. M. S. a. K. K.Ng, Physics of Semiconductor Devices: John Wiley & Sons, 1981.
[33] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, no. Part 2, No. 2B, pp. L139-L142, 1992/02/15, 1992.
[34] P. S. Yeh, C. C. Chang, Y. T. Chen, D. W. Lin, J. S. Liou, C. C. Wu, J. H. He, and H. C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Applied Physics Letters, vol. 109, no. 24, pp. 241103, 2016/12/12, 2016.
[35] 王子勛, “台灣科技大學電子工程所新穎光源實驗室之實驗報告,” 2018.
[36] 羅正忠, 半導體工程先進製程與模擬, 台北: 普林斯頓國際有限公司, 2011.
[37] 蕭宏, 半導體製程技術導論-第三版, 台北: 半導體製程技術導論-第三版, 2014.
[38] 施敏, 半導體元件物理與製作技術-第三版, 新竹: 國立交通大學出版社, 2013.
[39] 廖彥超, “「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,” 國立台灣科技大學電子工程所碩士學位論文, 2011.
[40] 黃義廷, “「表面結構化對氮化銦鎵p-i-n光感測器特性之影響」,” 國立台灣科技大學電子工程所碩士學位論文, 2015.
[41] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, and J. F. Schetzina, “Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys,” MRS Internet Journal of Nitride Semiconductor Research, vol. 4, no. S1, pp. 502-507, 1999.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE