簡易檢索 / 詳目顯示

研究生: Bernard Mwangi Maina
Bernard Mwangi Maina
論文名稱: Modelling Botnet Formation In Energy Heterogeneous IOT-­Based WSN
Modelling Botnet Formation In Energy Heterogeneous IOT-­Based WSN
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: Shan-Hsiang Shen
Shan-Hsiang Shen
Rafael Kaliski
Rafael Kaliski
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 55
中文關鍵詞: BotnetModellingHeterogeneousWSNsBotmasterPropagation
外文關鍵詞: Propagation, Botmaster, Botnet, Modelling, Heterogenous, WSNs
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Iot 技術以革命性的成長速度充斥著我們的生活,它以各式各樣的設備存在於我們的生活周遭,並應用於健康智能、交通運輸、軍事以及智能城市等。Iot 利用小型裝置的無線電偵測感應周遭環境並傳輸給控制中心。然而偵測器的缺點在於易受到惡意軟件的攻擊因為它所使用的機制較為脆弱,由於它受制於電池的電量因素、頻寬以及傳播的範圍,這些短缺將使它成為眾多殭屍網路的惡意程式所攻擊的目標,如 Mirai、 Hajime和 Persirai。這些 Iot 設備的瓶頸將會大大的影響資料的整合以及設備服務的可靠性,因此我們開發及使用了具流行性傳播導向的數學模型揭示物聯網殭屍網絡的形成和傳播模式,我們的模型 SCIRD-M(Susceptible-Compromised-Infected-Recovered-Dead with maintenance) 整合了感應器的異質性以及階段維持性,並且在最後我們以數值分析及模擬的方式呈現了我的模型具有良好的成效。


    IoT technology is revolutionizing our way of life at a rapid pace. It has vast practical applications including smart healthcare, transport, military, smart cities etc. IoT is powered by sensors, small devices that can detect, collect the environmental data, and propagate it to a control center using radio waves. Sensors, however, are highly prone to malware attack owing to their weak defense mechanisms. They are battery powered and thus have limited processing power, bandwidth, and communication range. These shortcomings have seen a sharp rise in IoT botnet malware such as Mirai, Hajime, and Persirai in the recent past. IoT botnets have devastating effects on data integrity and service availability. Therefore, we develop an epidemiology-based model to disclose the formation and propagation of IoT botnets. Our model, SCIRD-M (Susceptible-Compromised-Infected-Recovered-Dead with maintenance), incorporates the concepts of energy heterogeneity and periodic maintenance in sensors. A detailed mathematical analysis and numerical simulation have been provided to describe and validate the model.

    Contents Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . .i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . .iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . .iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . .v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2 Related Work and Background Information . . . . . . . . . . .5 2.1 Malware Epidemic Modelling . . . . . . . . . . . . . . .5 2.2 IoT­-Based WSNs . . . . . . . . . . . . . . . . . . . . . .9 2.3 IoT Botnet . . . . . . . . . . . . . . . . . . . . . . . . .11 2.3.1 Botnet Formation . . . . . . . . . . . . . . . . . .11 2.3.2 Botnet Propagation . . . . . . . . . . . . . . . . .11 3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1 General Description of SCIRD­M model . . . . . . . . . .15 3.2 State Transition Diagram . . . . . . . . . . . . . . . . . .17 4 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . .21 4.1 The Basic Reproduction Number (R0) . . . . . . . . . . .21 4.2 Equilibrium Points . . . . . . . . . . . . . . . . . . . . .23 4.2.1 Malware Free Equilibrium Point . . . . . . . . . .23 4.2.2 Endemic Equilibrium Point . . . . . . . . . . . . .23 4.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . .24 4.3.1 Malware Free Equilibrium Stability . . . . . . . .25 4.3.2 Endemic Equilibrium Stability . . . . . . . . . . .27 5 Simulation and Results . . . . . . . . . . . . . . . . . . . . . .29 5.1 Endemic Equilibrium Point . . . . . . . . . . . . . . . . .29 5.2 Malware­ Free Equilibrium Point . . . . . . . . . . . . . .31 5.3 The impact of Changing Different Parameter Values . . . .32 5.4 Comparison and Discussion . . . . . . . . . . . . . . . .35 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . .43

    References
    [1]S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, “Botnets: A survey,”Comput. Netw., vol. 57,no. 2, pp. 378–403, 2013.
    [2]R. Liu and J. Wang, “Internet of things: Application and prospect,” in MATEC Web of Conf., vol. 100,p. 02034, 2017.
    [3]M. Kocakulak and I. Butun, “An overview of wireless sensor networks towards internet of things,” in2017 IEEE 7th Ann. Comput. and Commun. Workshop and Conf., pp. 1–6, IEEE, 2017.
    [4]E. Bertino and N. Islam, “Botnets and internet of things security,”Comput., vol. 50, no. 2, pp. 76–79,2017.
    [5]C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and other botnets,”Comput., vol. 50, no. 7, pp. 80–84, 2017.
    [6]X. Zhang, O. Upton, N. L. Beebe, and K.­K. R. Choo, “Iot botnet forensics: A comprehensive digital forensic case study on mirai botnet servers,”Forensic Science International: Digital Investigation,vol. 32, p. 300926, 2020.
    [7]M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A.Halderman, L. Invernizzi, M. Kallitsis,et al., “Understanding the mirai botnet,” 2017.
    [8]A. Mahboubi, S. Camtepe, and K. Ansari, “Stochastic modeling of iot botnet spread: A short surveyon mobile malware spread modeling,”IEEE Access, 2020.
    [9]B. Liu, W. Zhou, L. Gao, S. Wen, and T. H. Luan, “Mobility increases the risk of malware propagations in wireless networks,” in2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 90–95, IEEE, 2015.
    [10]B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, and S. Wen, “Malware propagations in wireless ad hoc networks,”IEEE Trans. on Dependable and Secure Comput., vol. 15, no. 6, pp. 1016–1026, 2016.
    [11]S. Shen, H. Zhou, S. Feng, J. Liu, H. Zhang, and Q. Cao, “An epidemiology­ based model for dis­closing dynamics of malware propagation in heterogeneous and mobile wsns,”IEEE Access, vol. 8,pp. 43876–43887, 2020.
    [12]P.­Y. Chen, S.­M. Cheng, and M.­H. Sung, “Analysis of data dissemination and control in social internet of vehicles,”IEEE Internet of Things J., vol. 5, no. 4, pp. 2467–2477, 2018.
    [13]Z. Chen, “Epidemic thresholds in networks: Impact of heterogeneous infection rates and recoveryrates,” in2018 IEEE Int. Conf. on Commun., pp. 1–6, IEEE, 2018.
    [14]S. Shen, H. Zhou, S. Feng, J. Liu, and Q. Cao, “Snird: Disclosing rules of malware spread in hetero­geneous wireless sensor networks,”IEEE Access, vol. 7, pp. 92881–92892, 2019.39
    [15]A. Alexeev, D. S. Henshel, M. Cains, and Q. Sun, “On the malware propagation in heterogeneous networks,” in2016 IEEE 12th Int. Conf. on Wirel. and Mobile Compu. Netw. and Commun., pp. 1–5,IEEE, 2016.
    [16]H. Manjunath and C. Guruprakash, “Energy efficient heterogeneous wireless sensor networks ­recent trends & research challenges,” inInt. Conf. on Comput. Netw. and Inventive Commun. Technologies,pp. 146–151, Springer, 2019.
    [17]A. Sikandar and S. Kumar, “Energy efficient clustering in heterogeneous wireless sensor networks using degree of connectivity,”the Int. J. of Comput. Netw. & Commun., vol. 7, no. 2, pp. 19–31, 2015.
    [18]Y. Zhang, W. Xiong, D. Han, W. Chen, and J. Wang, “Routing algorithm with uneven clustering for energy heterogeneous wireless sensor networks,”J. of Sens., vol. 2016, 2016.
    [19]A. Miyaji and K. Omote, “Self-­healing wireless sensor networks,”Concurrency and Computation: Practice and Experience, vol. 27, no. 10, pp. 2547–2568, 2015.
    [20]S. Tang and B. L. Mark, “Analysis of virus spread in wireless sensor networks: An epidemic model,”in2009 7th Int. Workshop on Des. of Reliable Commun. Netw., pp. 86–91, IEEE, 2009.
    [21]W. Elsayed, M. Elhoseny, S. Sabbeh, and A. Riad, “Self-­maintenance model for wireless sensor net­works,”Comput. & Elect. Eng., vol. 70, pp. 799–812, 2018.
    [22]W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,”Proc. of the R Soc. of Lond. Series A, Containing papers of a math. and phys. character, vol. 115,no. 772, pp. 700–721, 1927.
    [23]P.­Y. Chen, S.­M. Cheng, and H.­Y. Hsu, “Analysis of information delivery dynamics in cognitive sensor networks using epidemic models,”IEEE Internet of things J., vol. 5, no. 4, pp. 2333–2342,2017.
    [24]S.­M. Cheng, W. C. Ao, P.­Y. Chen, and K.­C. Chen, “On modeling malware propagation in general­ized social networks,”IEEE Commun. Lett., vol. 15, no. 1, pp. 25–27, 2010.
    [25]P.­Y. Chen, S.­M. Cheng, and K.­C. Chen, “Optimal control of epidemic information dissemination over networks,”IEEE trans. on cybern., vol. 44, no. 12, pp. 2316–2328, 2014.
    [26]B. K. Mishra and N. Keshri, “Mathematical model on the transmission of worms in wireless sensor network,”Appl. Math. Model., pp. 4103–4111, 2013.
    [27]T. Gardner, C. Beard, and D. Medhi, “Using seirs epidemic models for iot botnets attacks,” inDRCN2017­Des. of Reliable Commun. Netw.; 13th Int. Conf., pp. 1–8, 2017.
    [28]D. Acarali, M. Rajarajan, N. Komninos, and B. B. Zarpelão, “Modelling the spread of botnet malware in iot­ based wireless sensor networks,” vol. 2019, 2019.
    [29]A. Singh, A. K. Awasthi, K. Singh, and P. K. Srivastava, “Modeling and analysis of worm propagationin wireless sensor networks,”Wirel. Pers. Commun., vol. 98, no. 3, pp. 2535–2551, 2018.
    [30]S. R. Biswal and S. K. Swain, “Model for study of malware propagation dynamics in wireless sensornetwork,” in2019 3rd Int. Conf. on Trends in Electronics and Inform., pp. 647–653, IEEE, 2019.
    [31]N. H. Khanh, “Dynamics of a worm propagation model with quarantine in wireless sensor networks,”Appl. Math. Inf. Sci, vol. 10, no. 5, pp. 1739–1746, 2016.
    [32]L. Feng, L. Song, Q. Zhao, and H. Wang, “Modeling and stability analysis of worm propagation in wireless sensor network,”Math. Probl. in Eng., vol. 2015, 2015.
    [33]S. Shen, H. Zhou, S. Feng, L. Huang, J. Liu, S. Yu, and Q. Cao, “Hsird: A model for characterizing dynamics of malware diffusion in heterogeneous wsns,”J. of Netw. and Comput. Appl., vol. 146,p. 102420, 2019.
    [34]M. S. Haghighi, S. Wen, Y. Xiang, B. Quinn, and W. Zhou, “On the race of worms and patches: Modeling the spread of information in wireless sensor networks,”IEEE Trans. on Inf. Forensics and Secur., vol. 11, no. 12, pp. 2854–2865, 2016.
    [35]Y. Ji, L. Yao, S. Liu, H. Yao, Q. Ye, and R. Wang, “The study on the botnet and its prevention policies in the internet of things,” in2018 IEEE 22nd Int. Conf. on Comput. Supported Cooperative Work in Des., pp. 837–842, IEEE, 2018.
    [36]P. Hejazi and G. Ferrari, “Energy and memory efficient data loss prevention in wireless sensor net­works,” 2018.
    [37]G. Cerullo, G. Mazzeo, G. Papale, B. Ragucci, and L. Sgaglione, “Iot and sensor networks security,”inSecurity and Resilience in Intelligent Data ­Centric Systems and Communication Networks, pp. 77–101, Elsevier, 2018.
    [38]M. Eslahi, R. Salleh, and N. B. Anuar, “Bots and botnets: An overview of characteristics, detection and challenges,” IEEE, 2012.
    [39]R. Rodriguez­Gomez, G. Maciá­Fernández, and P. Garcia­Teodoro, “Analysis of botnets through life­cycle,” in Proc. of the Int. Conf. on Secur. and Cryptography, pp. 257–262, IEEE, 2011.
    [40]S. Dange and M. Chatterjee, “Iot botnet: The largest threat to the iot network,” in Data Commun. andNetw., pp. 137–157, Springer, 2020.[41]P. V. den Driessche and J. Watmough, “Further notes on the basic reproduction number,” in Mathe­matical epidemiology, pp. 159–178, 2008.
    [42]P. van den Driessche, “Reproduction numbers of infectious disease models,”Infect.Dis.Model., vol. 2,no. 3, pp. 288–303, 2017.
    [43]R. P. Ojha, P. K. Srivastava, G. Sanyal, and N. Gupta, “Improved model for the stability analysis ofwireless sensor network against malware attacks,”Wirel. Pers. Commun., pp. 1–24, 2020.
    [44]J. R. C. Piqueira and C. M. Batistela, “Considering quarantine in the sira malware propagation model,”Mathematical Problems in Engineering, vol. 2019, 2019
    [45]del Rey, A. Martín, J. D. H. Guillén, and G. R. Sánchez, “A scirs model for malware propagation in wireless networks,” in Int. Joint Conf. SOCO’16­CISIS’16­ICEUTE’16, pp. 638–647, 2016

    無法下載圖示 全文公開日期 2024/02/03 (校內網路)
    全文公開日期 2026/02/03 (校外網路)
    全文公開日期 2023/02/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE