簡易檢索 / 詳目顯示

研究生: 傅郁翔
Yu-Xiang Fu
論文名稱: 以三維數值分析探討潛盾隧道位於不同土層界面 之受震行為
Investigations on the seismic behavior of shield tunnel situated at the interface between different soil layers by 3D numerical analysis
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳希舜
Shi-Shuenn Chen
陳韋志
Wei-Chih Chen
陳堯中
Yao-Chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 156
中文關鍵詞: 動態數值分析有限元素法地層剪力波速潛盾隧道土層界面
外文關鍵詞: Numerical Analysis, Finite element method, Shear wave velocity, shield tunnel
相關次數: 點閱:250下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究潛盾隧道於地層中之受震行為,土壤剪力波速為衡量地盤之重要指
    標,在地震作用之下,土壤與潛盾隧道會產生互制行為,本研究使用三向度有限
    元素法軟體PLAXIS-3D 分析,並搭配其軟體中之硬化土壤小應變模式,再根據
    剪力波速為變數計算土壤各項參數。計算過程中先模擬潛盾靜態開挖之流程,再
    於模型底部施加隧道縱向之地震力,並根據其計算之軸力、彎矩歷時,分析其環
    片結構受震下之內力。
    由於潛盾隧道存在之土層通常為不均質之土層,為了解不同土層交界面對隧
    道受震行為的影響,本研究使用不同的地層剪力波速為變數,先探討單一剪力波
    速之土層,隧道在不同地層剪力波速下之受震行為,再將地層一半以上設定為地
    層剪力波速很小之軟弱土層,以上方為軟弱土層,下方為不同剪力波速之地層,
    探討其上層與下層剪力波速之間的差距,以及交界面於隧道之位置(軟弱土層涵
    蓋的範圍)對於隧道受震的影響,分析結果顯示,土層之交界面在受震下之行為
    會產生類似剪切之行為,導致相較於單一土層之地層,隧道結構內力會有放大之
    效果。


    The purpose of this thesis was to study the seismic behavior of shield tunnel. Shear
    wave velocity is an index to measure the hardness of the ground. Under the action of
    earthquake, soil and shield tunnel will interact. In this study, the three-dimesional finite
    element method software PLAXIS-3D was used, and the HSS model was used for soil
    behavior. The shear wave velocity was used as a variable to calculate the soil parameters.
    In the analysis process, the static excavation of shield tunnel was simulated first and
    then the records of acceleration was applied at the bottom of the model, propagating
    vertically upward. According to the result of axial force and bending moment, the
    internal force of the lining under the earthquake is analyzed.
    Since the soil layers which shield tunnel situated would usually have different
    shear wave velocities. In order to understand the influence of the interface of different
    soil layers on the seismic behavior of the tunnel, this study uses different shear wave
    velocities as varaiables. First to discuss the seismic behavior of the tunnel between
    different shear wave velocities of soil layer with a single shear wave velocity model.
    Then about half of the layer is set as a weak soil layer with a small shear wave velocity,
    the upper layer is a soft soil layer, and the lower layer is a layer with different shear
    wave velocities, and the ratio between the upper and lower shear wave velocities would
    affect the tunnel seismic behavior. The position of the interface relative to the tunnel
    V
    (the range covered by the soft soil layer) affects the tunnel on the earthquake. Results
    show that abrupt changes of shear strain occur at the interface between the soil layers
    under earthquake. Compared with the single soil layer, the internal force of the tunnel
    lining will be amplified.

    目錄 表目錄 圖目錄 符號索引 第1章 緒論 1.1 研究目的與動機 1.2 研究範圍與方法 1.3 研究內容與架構 第2章 文獻回顧 2.1 潛盾工法概述 2.1.1 潛盾機形式 2.1.2 潛盾隧道之環片類型與載重形式 2.1.3 開挖輪進過程 2.2 隧道受震分析 2.2.1 土壤-結構互制法 2.2.2 數值分析法 2.2.3 隧道受震數值分析與理論解之研究比較與延伸 2.3 機械開挖擾動地質之行為與影響 2.3.1 開挖擾動之研究回顧 2.3.2 以輪進步驟分類開挖擾動 2.3.2.1 輪進步驟-前:盾首之土體擾動影響因素 2.3.2.2 輪進步驟-中:盾殼之土體擾動影響因素 2.3.2.3 輪進步驟-後:盾尾之土體擾動影響因素 2.4 土壤動態性質與模擬 2.4.1 土壤動態性質 2.4.2 等效線性法 2.4.3 完全非線性法 2.4.4 等效線性法與完全非線性法之比較回顧 2.4.5 遲滯阻尼與雷利阻尼之比較回顧 2.5 剪力波速之影響 2.5.1 剪力波速對隧道影響之研究 第3章 數值分析方法 3.1 PLAXIS程式簡介 3.1.1 PLAXIS基本操作 3.1.2 土壤模式 3.1.3 硬化土壤模式 3.1.4 土壤硬化小應變模式 3.2 PROSHAKE程式介紹 3.2.1 ProShake程式理論 3.2.2 ProShake操作介面 3.2.3 ProShake 操作步驟 3.3 濾波程式DYNAMIC INPUT WIZARD 簡介與應用 第4章 單土層隧道動態分析 4.1 分析工作規劃 4.2 三維分析模型建立 4.3 材料參數與假設 4.3.1 土壤參數與設定 4.3.2 結構參數決定 4.3.2.1 潛盾機 4.3.2.2 隧道襯砌 4.4 動態模型之邊界條件 4.5 地震波處理 4.6 模型網格設定 4.7 隧道模型之施工流程 4.8 分析結果與討論 4.8.1 隧道存在與否之影響 4.8.1.1 峰值加速度之變化 4.8.1.2 地表反應頻譜之變化 4.8.2 受震下環片彎矩探討 4.8.2.1 隧道受震下之彎矩歷時 4.8.2.2 受震引起之彎矩變化值 4.8.3 受震下環片之軸力探討 4.8.3.1 受震下之軸力歷時 4.8.3.2 受震引起之軸力變化量 第5章 不均勻土層隧道動態分析 5.1 前言 5.2 三維分析模型建立 5.2.1 軟弱黏土之假設 5.2.2 軟弱土層位置 5.3 分析工作之規劃 5.4 分析結果與討論 5.4.1 土層剪應變歷時 5.4.2 受震下環片彎矩探討 5.4.3 受震下環片軸力探討 第6章 結論與建議 6.1 結論 6.2 建議 參考文獻 委員意見回覆表

    [1] 中華民國內政部營建署(2011),建築物耐震設計規範及解說(94年版)。
    [2] 胡庭豪(2010),捷運工程技術服務之回顧與展望,中興工程季刊,第107
    期,p. 303-327。
    [3] 翁孟嘉,蔡明欣,冀樹勇,陳錦清(2005),地震時潛盾隧道與既有建築物之
    互制行為,第11屆大地工程學術研究討論會。
    [4] 陳秉睿(2021),以三維數值分析初步探討潛盾隧道在不同剪力波速地層中之
    受震行為,碩士論文,營建工程學研究所,國立台灣科技大學。
    [5] Anagnostou, G., Linard, C., and Ramoni, M. (2009). “About the Advancing Face
    – Spatial Effects in Tunnel. Engineering.” Rocksoil’s 30th Anniversary
    Conference / The Evolution of Design and Construction Approaches in the Field
    of Underground Projects.
    [6] Atkinson, J. H., and Sallfors, G. (1991). “Experimental determination of stressstrain-
    time characteristics in laboratory and in-situ test”, Proceedings of the 10th
    European Conference on Soil Mechanics and Foundation Engineering, Florence,
    pp.915-956.
    [7] Babendererde, T., and Elsner, P. (2014). “Keeping the Face Support in Soft
    Ground. TBM Tunnelling.” Geotechnical Aspects of Underground Construction
    in Soft Ground - Proceedings of the 8th Int. Symposium on Geotechnical Aspects
    of Underground Construction in Soft Ground, TC204 ISSMGE - IS-SEOUL
    2014, pp. 531–537.
    [8] Brinkgreve, R. B. J., Kappert, M. H. and Bonnier, P. G. (2007). “Hysteretic
    damping. in a small-strain stiffness model” Numerical Models in Geomechanics –
    NUMOG X – Pande & Pietruszczak (eds).
    [9] Building Seismic Safety Council (BSSC) (2001), NEHRP recommended
    131
    provisions for seismic regulations for new buildings and other structures, 2000
    Edition, Part 1: Provisions, prepared by the Building Seismic Safety Council for
    the Federal Emergency Management Agency (Report FEMA 368), Washington,
    D.C.
    [10] Cai, M., and Kaiser, P. K. (2005). “Assessment of Excavation Damaged Zone
    Using a. Micromechanics Model.” Tunnelling and Underground Space
    Technology, vol. 20, no. 4, pp. 301–310.
    [11] Chanchaya, C., and Suwansawat, S. (2014). “Directional control of EPB shield in
    spiral curve.” Geotechnical Aspects of Underground Construction in Soft Ground
    – Yoo, Park, Kim & Ban (Eds), ISBN 978-1-138-02700-8
    [12] Chen, L. H.(2001). “Failure of rock under normal wedge indentation” Ph.D.,
    University of. Minnesota, Minneapolis.
    [13] Do, N., Dias, D., Oreste, P., and Maigre, I. (2015). “Behaviour of Segmental
    Tunnel Linings under Seismic Loads. Studied with the Hyperstatic Reaction
    Method.” Soil Dynamics and Earthquake Engineering, vol. 79, pp. 108–117.
    [14] Fabozzi, S., and Bilotta, E. (2016). “Behaviour of a Segmental Tunnel Lining
    Under. Seismic Actions.” Procedia Engineering, vol. 158, pp. 230– 235.
    [15] Ghaboussi, J., and Gioda, G. (1977). “On the Time-Dependent Effects in
    Advancing. Tunnels.” International Journal for Numerical & Analytical
    Methods in Geomechanics, vol. 1, pp. 249–269.
    [19] Guan, Z., Deng, T., Wang, G., and Jiang Y. (2015). “Studies on the key parameters
    insegmental lining design.” Journal of Rock Mechanics and Geotechnical
    Engineering 7(6):674-683.
    [20] Hardin, B. O., and Black, W. L. (1969). “Closure to vibration modulus of normally
    consolidated clays”. Proc. ASCE: Journal of the Soil Mechanics and Foundations
    Division, 95(SM6), pp.1531–1537.
    132
    [21] Hardin, B. O., and Drnevich, V. P. (1972). “Shear modulus and damping in soils:
    Measurement and parameter effects.” Journal of Soil Mechanics and Foundations
    Division, ASCE,vol. 98, pp. 603-624.
    [22] Hashash, Y. M. A., Hook, J. J., Schmidt, B., and Yao, J. I. C. (2001). “Seismic
    Design and Analysis of Underground. Structures.” Tunnelling and Underground
    Space Technology, vol. 16, no. 4, pp. 247–293.
    [23] Huang, H., Lecampion, B and Detournay, E. (2013). “Discrete element modeling
    of tool-rock interaction I: rock cutting”International Journal for Numerical and
    Analytical Methods in Geomechanics, 37:1913–1929
    [24] Idriss, I. M. and Seed, H. B. (1968). “Seismic Response of Horizontal Soil Layers.”
    Journal of Soil Mechanics and Foundation, vol. 94, pp. 1003–1031.
    [25] Janbu, J. (1963). “Soil Compressibility as Determined by Oedometer and Triaxial
    Test.” Proc. ECSMFE Wiesbaden, Vol. 1, pp.19-25.
    [26] Martino, J. B., and Chandler, N. A. (2004). “Excavation-Induced Damage
    Studies at the. Underground Research Laboratory.” International Journal of
    Rock Mechanics and Mining Sciences, vol. 41, no. 8 SPEC.ISS., pp. 1413–1426.
    [27] Pan, H. K., Wang, G. B., and Wang, Y. X. (2015). “Preliminary Analysis of the
    Influence of Longitudinal Non-Uniform Distribution of Soil Parameters on the
    Seismic Response of a Shield Tunnel.” China Earthquake Engineering Journal,
    vol. 37, no. 3.
    [28] Peck, R. B., Hendron, A. J., and Mohraz, B. (1972). “State of the Art of Soft-
    Ground Tunneling.” International. Proceedings of the North American Rapid
    Excavation and Tunneling Conference, vol. 1, pp. 259–286.
    [29] Power, M. S., Rosidi, D., and Kaneshiro, J. (1996). “Vol. III Strawman: screening,
    evaluation, and retrofit design of tunnels.” Report Draft. National Center for
    Earthquake Engineering Research, Buffalo, New York.
    133
    [30] Proshake Ground Response Analysis Program User’s Manual. 2.0 (2017), EduPro
    Civil Systems, Inc.
    [31] Ramoni, M., and Anagnostou, G. (2006). “On the Feasibility of TBM Drives in
    Squeezing Ground.” Tunnelling and Underground Space Technology, vol. 21, p.
    262.
    [32] Ramoni, M., and Anagnostou, G. (2007). “The Effect of Advance Rate on Shield
    Loading in. Squeezing Ground.” Proceedings of the 33rd ITA-AITES World
    Tunnel Congress - Underground Space - The 4th Dimension of Metropolises, vol.
    1, pp. 673–677.
    [33] Salvatore, M., and Lillis, A. D. (2019). “Predicted and Observed Settlements 152.
    Induced by the Mechanized Tunnel Excavation of Metro Line C near S.
    Giovanni Station in Rome.” Tunnelling and Underground Space Technology,
    vol. 86, pp. 236–246.
    [34] Santos, J. A., and Correia, A. G. (2001). “Reference threshold shear strain of soil.
    Its application to obtain a unique strain-dependent shear modulus curve for soil”.
    In Proceedings 15th International Conference on Soil Mechanics and
    Geotechnical Engineering. Istanbul, Turkey, volume 1, pp.267–270.
    [35] Sato, T., Kikuchi, T., and Sugihara, K. (2000). “In-Situ Experiments on an
    Excavation Disturbed Zone Induced. by Mechanical Excavation in Neogene
    Sedimentary Rock at Tono Mine, Central Japan.” Engineering Geology, vol. 56,
    no. 1–2, pp. 97–108.
    [36] Schwartz, C. W., and Einstein, H. H. (1980). Improved Design of Tunnel
    Supports: Volume 1 - Simplified Analysis for Ground-Structure Interaction in
    Tunneling. DOT-TSC-UMTA-80-27-I, United States. Urban Mass
    Transportation Administration.
    134
    [37] Shahrour, I., Khoshnoudian, F., Sadek, M., and Mroueh, H. (2010).“Elastoplastic
    Analysis of the Seismic Response of Tunnels in. Soft Soils.” Tunnelling and
    Underground Space Technology, vol. 25, no. 4, pp. 478–482.
    [38] Shehata, E. A. R., and Toshiro, H. (2013). “Soil-structure interaction modeling
    effects on seismic response of cable-stayed bridge tower.” International Journal
    of Advanced Structural Engineering 5, Article number: 8.
    [39] Sliteen, I., Mroueh, H., and Sadek, M. (2011). “Three-Dimensional Modeling of
    the Behavior of Shallow. Tunnel under Seismic Loading.” 20eme Congres
    Francais de Mechanique (CFM2011).
    [40] Von Soos, P. (1980). “Properties of Soil and Rock (in German)” In Grund
    bautaschenbuch. Part4, Edition 4, Ernst & Sohn,Berlin.
    [41] Vonk, M. (2020). Grouting the tail void: Analysis of the tail void grouting process
    at the. North/South line. M.S., Delft University of Technology, Delft.
    [42] Vucetic, M., and Dobry, R. (1991). “Effects of Soil Plasticity on Cyclic Response.”
    Journal of Geotechnical Engineering, vol. 117, no. 1, pp. 89–107.
    [43] Wang, J. N.(1993). Seismic Design of Tunnel-A simple State-of-the-Art Design
    Approach, Parsons Brinckerhoff Quade & Douglas Inc.
    [44] Wang, J. N., and Munfakh, G. A. (2001). “Seismic Design of Tunnels.”
    Transactions on. the Built Environment, vol. 57, pp. 589–598.
    [45] Wang, Z., Ma, Z., and Dang, F. (2013). “Seismic Response Analysis of Soil Layer
    Using. Equivalent Linear or Nonlinear Method.” Journal of Xi an University of
    Technology, vol. 29, no. 4, pp. 421–427.
    [46] Xiong, L. X., Li, T. B., and Liu, Y. (2007). “Numerical Simulation of Seismic
    Response at the Entrance of the Unsymmetrical LoadingTunnel.” Journal of
    Geomechanics, vol. 13, no. 3.
    135
    [47] Yang, Y., Yu, H., and Yuan, Y. (2019). “Comparative Study on Several Soil
    Ground Simulation. Schemes in Seismic Analysis of Underground Structures.”
    Journal of Disaster Prevention and Mitigation Engineering, vol. 39, no. 2, pp.
    244–257.
    [48] Yu, H., Zhang, Z., Chen, J., Bobet, A., Zhao, M., and Yuah, Y. (2018).
    “Analytical Solution for Longitudinal Seismic Response of. Tunnel Liners with
    Sharp Stiffness Transition.” Tunnelling and Underground Space Technology,
    vol. 77, pp. 103–114.

    QR CODE