簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 埋置基礎與層狀土壤互制系統於垂直振動下之簡化分析模式
Simplified Model for Embedded Foundation and Layered Soil System under Vertical Vibration
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 卿建業
Jian-Ye Ching
林宏達
Hong-Da Lin
施俊揚
Jun-Yang Shi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 130
中文關鍵詞: 基礎振動土壤結構互制簡化模式等值模式
外文關鍵詞: foundation vibration, soil-structure interaction, simplified model, equivalent model
相關次數: 點閱:365下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究嘗試對垂直振動下之實際基礎土壤互制系統建立簡化分析模式,先以11種基本單元為基礎,建立93組簡化模型,期使簡化模式與實際基礎土壤互制系統在靜態與動態下皆具有相同之反應,再以最佳化分析取得最佳的簡化模型,以應用於模擬土壤,並大量降低分析所需時間。
本研究針對表面方形基礎層狀土壤、埋置方形基礎層狀土壤與埋置圓柱基礎單層土壤三類互制系統,以動態反應放大因數為比較對象,分別與理論解、電腦程式SASSI及國內外學者之簡化模型相互論證。研究結果顯示,本研究之簡化模式可一併有效模擬埋置基礎與層狀土壤互制系統,於土壤結構互制系統之簡化有相當明顯之突破。


This thesis proposes a simplified model for vertical vibration of practical foundation-soil systems. Based on eleven basic units, ninety-three simplified models are established so that each one has equivalent static and dynamic responses of the practical foundation-soil system. The proposed simplified model is obtained by optimization analysis, which can be used to simulate the soil and greatly reduces the time required for dynamic analysis.
In this study, the surface square foundation on layered soil, the embedded square foundation in layered soil, and the embedded cylindrical foundation in homogeneous soil are further analyzed to investigate the applicability of the proposed method. The results are compared to those by theoretical solutions, computer program SASSI, and existing simplified models, which shows that the proposed simplified model can effectively simulate the layered soil with embedded foundation and has the new breakthrough in soil-structure interaction domain.

論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 第二章 文獻回顧 3 2.1 土壤與結構互制系統 3 2.2 簡化模型之發展 4 2.3 小結 10 第三章 基礎土壤動態互制系統於垂直振動下之簡化模式 11 3.1 簡化模式之理論 11 3.1.1 基本假設 11 3.1.2 實際基礎土壤互制系統之動態反應 12 3.1.3 簡化模式之動態反應 13 3.1.3.1 參考單元 13 3.1.3.2 基本單元 17 3.1.3.3 組合規則 18 3.1.3.4 放大因數 19 3.1.4 建立等值模式 19 3.2 等值模式最佳化分析 20 第四章 簡化模式之分析與驗證 22 4.1 表面方形基礎層狀土壤互制系統 22 4.2 埋置方形基礎層狀土壤互制系統 27 4.3 埋置圓柱基礎單層土壤互制系統 32 第五章 結論與建議 36 5.1 結論 36 5.2 建議 38 參考文獻 39

[1] Lysmer, J., “Analytical Procedures in Soil Dynamics,” Report No. EERC 78-29, Earthquake Engineering Research Center, University of California, Berkeley (1978).

[2] Hsieh, T. K., “Foundation Vibrations,” Proceedings of the Institution of Civil Engineers, Vol. 22, No. 2, pp. 211–226 (1962).

[3] Lysmer, J., and Richart, F. E., “Dynamic Response of Footings to Vertical Loading,” Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM1, pp. 65–91 (1966).

[4] Wolf, J. P., and Somaini, D. R., “Approximate dynamic model of embedded foundation in time domain,” Earthquake Engineering and Structural Dynamics, Vol. 14, No. 5, pp. 683–703 (1986).

[5] De Barros, F. C. P., and Luco, J. E., “Discrete models for vertical vibrations of surface and embedded foundation,” Earthquake Engineering & Structural Dynamics, Vol. 19, pp. 289–303 (1990).

[6] Jean, W. Y., Lin, T. W., and Penzien, J., “System parameters of soil foundation for time domain dynamic analysis,” Earthquake Engineering & Structural Dynamics, Vol. 19, pp. 541–553 (1990).

[7] Wolf, J. P., and Paronesso, A., “Lumped-parameter model for foundation on layrer,” Proc. 10th European Conference on Soil Mechanics Engineering, Vol. 1, pp. 287–290 (1991)

[8] Wolf, J. P., “Consistent lumped-parameter models for unbounded soil: physical representation,” Earthquake Engineering & Structural Dynamics, Vol. 20, No. 1, pp. 11–32 (1991).

[9] Wolf, J. P., “Consistent lumped-parameter models for unbounded soil: frequency-independent stiffness, damping and mass matrices,” Earthquake Engineering & Structural Dynamics, Vol. 20, No. 1, pp. 33–41 (1991).

[10] Wolf, J. P., and Paronesso, A., “Lumped‐parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock,” Earthquake Engineering and Structural Dynamics, Vol. 21, No. 12, pp. 1021–1038 (1992).

[11] Wu, W. H., and Chen, C. Y., “Simple lumped-parameter models of foundation using mass-spring-dashpot oscillators,” Journal of the Chinese Institute of Engineers, Vol. 24, No. 6, pp. 681–697 (2001).

[12] Wu, W. H., and Lee, W. H., “Nested lumped-parameter models for foundation vibrations,” Earthquake Engineering & Structural Dynamics, Vol. 33, pp. 1051–1058 (2004).

[13] Baidya, D. K., Muralikrishna, G., and Pradhan, P. K., “Investigation of foundation vibrations resting on a layered soil system,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 1, pp. 116–123 (2006).

[14] Saitoh, M., “Simple model of frequency-dependent impedance functions in soil-structure interaction using frequency-independent elements,” Journal of Engineering Mechanics, Vol. 133, No. 10, pp. 1101–1114 (2007).

[15] Chen, S. S., and Hou, J. G., “Modal analysis of circular flexible foundations under vertical vibration,” Soil Dynamics and Earthquake Engineering, Vol. 29, No. 5, pp. 898–908 (2009).

[16] Wang, H., Liu, W., Zhou, D., Wang, S., and Du, D., “Lumped-parameter model of foundations based on complex Chebyshev polynomial fraction,” Soil Dynamics and Earthquake Engineering, Vol. 50, pp. 192–203 (2013).

[17] Lesgidis, N., Kwon, O. S., and Sextos, A., “A time‐domain seismic SSI analysis method for inelastic bridge structures through the use of a frequency‐dependent lumped parameter model,” Earthquake Engineering & Structural Dynamics, Vol. 44, No. 13, pp. 2137–2156 (2015).

[18] Chen, S. S., and Shi, J. Y., “A Simplified model for vertical vibrations of surface foundations,” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 5, pp. 651–655 (2006).

[19] 施俊揚,「動態土壤結構互制系統簡化分析模式」,博士論文,國立臺灣科技大學,臺北 (2006)。

[20] Chen, S. S., and Shi, J. Y., “Simplified model for torsional foundation vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 27, No. 3, pp. 250–258 (2007).

[21] Chen, S. S., and Shi, J. Y., “A response-based simplified model for vertical vibrations of embedded foundations,” Soil Dynamics and Earthquake Engineering, Vol. 31, No. 5-6, pp. 773–784 (2010).

[22] Chen, S. S., and Shi, J. Y., “A simplified model for coupled horizontal and rocking vibrations of embedded foundations,” Soil Dynamics and Earthquake Engineering, Vol. 48, No. 5, pp. 209–219 (2013).

[23] Chen, S. S., and Shi, J. Y., “Simplified soil–structure interaction analysis for high-tech industrial buildings subjected to forced vibrations,” International Journal of Structural Stability and Dynamics, Vol. 15, No. 1, pp. 1–22 (2015).

[24] Chen, S.S., Liao, K.H., and Shi, J.Y., “A Dimensionless Parametric Study for Forced Vibrations of Foundation-Soil Systems,” Computers and Geotechnics, Vol. 76, pp. 184–193 (2016).

[25] Chen, S.S., Liao, K.H., and Shi, J.Y., “Parametric Investigation for Rigid Circular Foundations Undergoing Vertical and Torsional Vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 82, pp. 161–169 (2016).

[26] Wong, H. L., and Luco, J. E., “Tables of impedance functions for square foundations on layered media,” Soil Dynamics and Earthquake Engineering, Vol. 4, No. 2, pp. 64–81 (1985).

[27] Lysmer, J., Tabatabaie-Raissi, M., Tajirian, F., Vahdani, S., and Ostadan, F., SASSI: A system for analysis of soil–structure interaction problems. University of California, Berkeley (1981).

[28] Tassoulas, J. L., “Elements for the numerical analysis of wave motion in layered media,” Ph.D. Dissertation, Department of Civil Engineering, Massachusetts Institute of Technology (1981).

QR CODE