簡易檢索 / 詳目顯示

研究生: 陳思琳
Sz-Lin Chen
論文名稱: 以三維解耦分析方法探討開挖與板式筏基之鄰房互制行為
A Study of Interaction of Excavation and Adjacent Building with Mat Foundation Using Decoupled Analysis Method
指導教授: 林宏達
Horn-Da Lin
口試委員: 陳正誠
Cheng-Cheng Chen
歐章煜
Chang-Yu Ou
謝佑明
Yo-Ming Hsieh
林宏達
Horn-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 159
中文關鍵詞: 板式筏基深開挖解耦分析模擬土壤與結構互制行為三維模擬鄰近結構物
外文關鍵詞: Mat foundation, Deep excavation, Decoupled analysis, Soil-Structure interaction, 3D simulation, Adjacent building
相關次數: 點閱:176下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鄰近結構物之開挖工程為複雜之三向度問題,但以往在開挖分析中,常忽略鄰房結構物。若僅以自由場來評估開挖引致之地盤反應及建物損害,可能會低估實際情況。為獲得更貼近實際情況之結果,台科大研究團隊建立三維解耦分析方法(DAM),並已針對獨立基腳與連續基腳之鄰房進行相關研究。本研究將針對板式筏基之鄰房進行開挖引致之土壤-結構互制行為探討。
    本研究擬建立一套板式筏基之鄰房解耦分析方法,以土壤彈簧模擬開挖引致之土壤-結構互制行為。在結構配筋設計時,將結構模型拆解為上部結構與下部結構,並依照載重組合進行結構配筋設計。本研究將比較開挖引致之板式筏基與獨立基腳之結果,以及以不同地震力大小設計之結構鋼筋設計之解耦分析結果。
    本研究結果顯示,解耦分析方法可應用於板式筏基。開挖引致板式筏基之損害較獨立基腳小,板式筏基受開挖影響後無塑性鉸發生,獨立基腳則發生30個塑性鉸。隨著考量的地震力越大,開挖引致鄰房結構物之損害就越小。因此開挖引致建物之損害,不只與基礎型式有關,也與設計時考量的地震力大小相關。最後彙整分析結果,以鄰房角變量建立結構損害之關係,以供工程實務應用。


    The actual situation of excavation with the adjacent building is a complex three-dimensional problem. However, the influence of the adjacent building was usually ignored. The method by using the greenfield to evaluate the ground response and the building damage is not accurate. The potential damage may be underestimated. In order to get better analytical results, the three-dimensional Decoupled Analysis Method (DAM) was developed. Previous studies have already been conducted on spread footing and continuous footing. This study aims to evaluate the ground response and building damage potential of the adjacent building with mat foundation induced by the excavation.
    This study intends to establish a decoupled analysis method of mat foundation using soil springs to simulate the interaction between soil and structure. In reinforcement design, the structure is separated into the superstructure and the substructure. Besides, proper loading combinations are considered in the design.
    The results of the mat foundation are compared with the results of the spread footing. The results of structural reinforcement design with different seismic force are also studied.
    Results show that the decoupled analysis method for the mat foundation is feasible. The excavation induced effects on the adjacent building of the mat foundation is less severe than that of the spread footing. The mat foundation structure exhibits no plastic hinge. However, the spread footing structure suffers 30 plastic hinges. The smaller building damage potential is observed when a larger seismic force is considered in the reinforcement design. Therefore, the building damage induced by the excavation is not only related to the foundation type but also related to the magnitude of the seismic force considered in the reinforcement design. Finally, the analytical results are summarized to develop the relationship of angular distortion and building damage for engineer application.

    目錄 論 文 摘 要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1研究背景與目的 1.2 研究內容及架構 第二章 文獻回顧 2.1 開挖引致地盤反應行為 2.1.1 擋土壁變形行為 2.1.2 地表沉陷特性 2.2 開挖引致結構物變形行為 2.3開挖引致結構物之損害評估 2.4 開挖與鄰房之耦合分析 2.5 三維開挖與鄰房之解耦分析 2.6 地盤反力係數之推估 第三章 研究方法 3.1 三維解耦分析方法 3.2板式筏基結構物模擬方法 3.2.1 結構物模擬流程 3.2.2 結構物模擬方法 3.3 土壤彈簧勁度模擬方法 3.4 結構鋼筋設計方法 3.5 塑性鉸之設定 3.6 開挖模型模擬方法 3.6.1 開挖模型模擬流程 3.6.2 土壤分析模式 3.7 開挖與結構物迭代分析方法 第四章 開挖案例及鄰近結構物之分析模擬 4.1開挖案例分析模擬 4.1.1 開挖案例之工程概況 4.1.2 擋土結構參數之率定 4.1.3 土壤參數之率定 4.1.4開挖分析模型條件之假設 4.1.5 開挖模型自由場驗證 4.2結構物分析模擬 4.2.1 結構物假設案例介紹 4.2.2 結構物分析流程 4.3板式筏基之三維解耦分析結果 第五章 開挖引致地盤反應與不同基礎型式之鄰房反應 5.1 不同基礎型式模擬方法之比較 5.2 開挖引致之地盤反應 5.3 開挖引致之鄰房反應 5.4 鄰房損害潛勢評估 5.5 不同地震力設計下開挖引致結構反應之比較 5.6 開挖引致鄰房角變量評估方式探討 第六章 結論與建議 6.1 結論 6.1.1解耦分析方法 6.1.2 不同基礎型式之地盤反應及結構反應探討 6.1.3 不同地震力設計下之解耦分析結果 6.1.4 開挖引致鄰房角變量評估 6.2 建議 參考文獻

    1.內政部營建署,「建築物基礎構造設計規範」。
    2.內政部營建署,「混凝土結構設計規範」。
    3.陳維晟(2015),「三維空間下開挖行為與鄰房反應之解耦分析與探討」,碩士論文,國立台灣科技大學營建工程系。
    4.林冠傑(2016),「以三維解耦分析方法探討開挖引致地盤反應與不同方位之鄰房損害潛勢評估」,碩士論文,國立台灣科技大學營建工程系。
    5.汪家新(2017),「以三維解耦分析方法探討開挖引致之地盤反應與不同基礎型式之鄰房損害潛勢」,碩士論文,國立台灣科技大學營建工程系。
    6.歐章煜(2017),「進階深開挖工程分析與設計」,科技圖書。
    7.嚴東利、張桂才(1991),「建築物允許沉陷量之探討」,地工技術雜誌,第34期,第78-96頁。
    8.謝旭昇、程日晟(1996),「論筏基設計用地盤反力係數」,地工技術雜誌,第53期,第45-54頁。
    9.Ahmed, M., Mohamed, M. H., Mallick, J., & Hasan, M. A. (2014). "3D-analysis of soil-foundation-structure interaction in layered soil." Open Journal of Civil Engineering, 4(04), 373.
    10.Bjerrum, L. (1963). "Allowable settlement of structures." Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, 135-137.
    11.Boscardin, M. D., & Cording, E. J. (1989). "Building response to excavation-induced settlement." Journal of Geotechnical Engineering, 115(1), 1-21.
    12.Bowles,J.E., (1988). "Foundation Analysis and Design." 4th Edition, McGraw-Hill Book, New York.
    13.Boone, S. J. (1996). "Ground-movement-related building damage." Journal of Geotechnical Engineering, 122(11), 886-896.
    14.Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu, G. (2000). "Modelling tunneling-induced settlement of masonry buildings." Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 143(1), 17-29.
    15.Clough, G. W., & O'Rourke, T. D. (1990). "Construction induced movements of insitu walls." Design and performance of earth retaining structures, ASCE, 439-470.
    16.Cording, E. J., Long, J. L., Son, M., Laefer, D., & Ghahreman, B. (2010). "Assessment of excavation-induced building damage." Earth Retention Conference 3, 101-120.
    17.Castaldo, P., Calvello, M., & Palazzo, B. (2013). "Probabilistic analysis of excavation-induced damages to existing structures." Computers and Geotechnics, 53, 17-30.
    18.Dang, H. P. (2008). "Excavation behavior and adjacent building reponse analyses using user defined soil models in PLAXIS." Master dissertation, National Taiwan University of Science and Technology.
    19.Dang, H. P., Lin, H. D., Kung, J. H., & Wang, C. C. (2012)." Deformation behavior analyses of braced excavation considering adjacent structure by user-defined soil models." Journal of GeoEngineering, 7(1), 13-20.
    20.Elsamee, W. N. A. (2013). "An experimental study on the effect of foundation depth, size and shape on subgrade reaction of cohessionless soil." Engineering, 5(10), 785.
    21.Finno, R. J., and Bryson, L. S. (2002). "Response of building adjacent to stiff excavation support system in soft clay." Journal of performance of constructed facilities, 16(1), 10-20.
    22.Finno, R. J., Bryson, S., and Calvello, M. (2002), "Performance of a stiff support system in soft clay." Journal of Geotechnical and Geoenvironmental Engineering, 128(8), 660-671.
    23.Finno, R. J, Voss, F. T., Rosscow, E., and Blackburn, J. T. (2005), "Evaluating damage potential buildings affected by excavations", Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1199-1210.
    24.Finno, R. J., Blackburn, J. T., and Roboski, J. F. (2007). "Three-dimensional effects for supported excavation in clay." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 133(1), 30-36.
    25.Gazetas, G. and Tassoulas, J. L. (1987). "Horizontal stiffness of arbitrarily shaped embedded foundations." Journal of Geotechnical Engineering, ASCE, 113(5), 440-457.
    26.Hsieh, P. G., & Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." Canadian geotechnical journal, 35(6), 1004-1017.
    27.Kung, G. T., Juang, C. H., Hsiao, E. C., & Hashash, Y. M. (2007). "Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays." Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 731-747.
    28.Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F., & Poulous, H. G. (1977) "Stress-deformation and strength characteristics." State-of-the-ART Report, Proceedings of Ninth International Conference on soil Mechanics and Foundation Engineering, Tokyo, 2, 421-494.
    29.Laefer, D. F., Ceribasi, S., Long, J. H., & Cording, E. J. (2009). "Predicting RC frame response to excavation-induced settlement." Journal of geotechnical and geoenvironmental engineering, 135(11), 1605-1619.
    30.Lim, A., Ou, C. Y., and Hsieh, P. G. (2010). "Evaluation of clay constitutive models for analysis of deep excavation under undrained consitions." Journal of GeoEngineering, 5(1), 9-20.
    31.Lin, H. D., Truong, H. M., Dang, H. P., & Chen, C. C. (2014). "Assessment of 3d excavation and adjacent building's reponses with consideration of excavation-structure interaction." Tunneling and Underground Construction, 256-265.
    32.Lee, J., Jeong, S., & Lee, J. K. (2015). "3D analytical method for mat foundations considering coupled soil springs." Geomechanics and Engineering, 8(6), 845-857.
    33.Lin, H. D., Mendy, S., Liao, H. C., Dang, P. H., Hsieh, Y. M., & Chen, C. C. (2016). "Responses of 3D excavation and adjacent buildings in sagging and hogging zones using Dcoupled Analysis Method." Journal of GeoEngineering, 11(2), 85-96.
    34.Mroueh, H., & Shahrour, I. (2003). "A full 3-D finite element analysis of tunneling–adjacent structures interaction."Computers and Geotechnics, 30(3), 245-253.
    35.Mendy, S. (2014) "Study of excavation behavior and adjacent building response using 3D Decouple Analysis." Master dissertation, National Taiwan University of Science and Technology.
    36.Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993). "Characteristics of ground surface settlement during excavation." Canadian Geotechnical Journal, 30, 758-767.
    37.Ou, C. Y., Liao, J. T., and Lin, H. D. (1998). "Performance of diaphragm wall constructed using top-down method." Journal of Geotechnical and Geoenvironmetal Engineering, 124(9), 798-808.
    38.Ou, C. Y., Liao, J. T., and Cheng, W. L. (2000). "Building response and ground movements induced by a deep excavation." Geotechnique, 50(3), 209-220.
    39.Ou, C. Y., & Hsieh, P. G. (2011). "A simplified method for predicting ground settlement profiles induced by excavation in soft clay." Computers and Geotechnics, 38(8), 987-997.
    40.Potts, D. M., & Addenbrooke, T. I. (1997). " A structure's influence on tunnelling-induced ground movements. " Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, Vol. 125, No. 2.
    41.Plaxis 3D. (2014). Material Models Manual.
    42.Skempton, A. W., & MacDonald, D. H. (1956). "The allowable settlements of buildings." Proceedings of the Institution of Civil Engineers, 5(6), 727-768.
    43.Son, M., and Cording, E. J. (2005). "Estimation of building damage due to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 131(2), 162-177.
    44.Son, M., & Cording, E. J. (2007). " Evaluation of building stiffness for building response analysis to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmental engineering, 133(8), 995-1002.
    45.Schuster, M., Kung, G. T. C., Juang, C. H., and Hashash, Y. M. A. (2009). "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 135(12), 1823-1835.
    46.Son, M., & Cording, E. J. (2010). "Responses of buildings with different structural types to excavation-induced ground settlements." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 137(4), 323-333.
    47.Terzaghi, K. (1955). "Evalution of conefficients of subgrade reaction." Geotechnique, 5(4), 297-326.
    48.Truong, H. M. (2013). "Study of excavation behavior and adjacent building response with 3D simulation." Master dissertation, National Taiwan University of Science and Technology.
    49.Vesic, A. B. (1961). "Bending of beams resting on isotropic elastic solid." Journal of the Engineering Mechanics Division, 87(2), 35-54.
    50.Walhls, H. E. (1981). "Tolerable settlement of buildings." Journal of Geotechnical and Geoenvironmental Engineering, (107), 1489-1504.

    QR CODE