簡易檢索 / 詳目顯示

研究生: 蔡亞宸
Ya-Chen Tsai
論文名稱: 車載網路中無第三方協助之門檻認證暨途中過濾安全架構設計
Design of a Secure Framework Using Threshold Authentication and En-Route Filtering without the Third Party in VANETs
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 范欽雄
none
蔡志宏
none
周俊廷
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 51
中文關鍵詞: 車載網路群集無第三方安全門檻認證途中過濾
外文關鍵詞: Vehicular ad hoc networks (VANETs), cluster, security, without the third party, threshold authentication, en-route filtering
相關次數: 點閱:273下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 車載網路的安全性為很重要的議題之一。在大部分的研究中,為確保車載網路的安全性,皆假設存在可靠的第三方基礎設施,並且車輛可經由路邊裝置與第三方的憑證管理中心互相通訊合作,以協助車載網路中通訊的安全。然而,現實環境中,車輛的通訊範圍內之第三方基礎設施可能不存在,或是已被攻擊,甚至已損壞不可用。因此,本論文首先提出了一個無需第三方基礎設施協助的安全架構,以群集架構為基礎,透過車輛與車輛間直接通訊,並引入PCREF [1] 的部分概念,利用多項式為基底的門檻認證機制與途中過濾機制,使車載網路於無第三方的環境仍可達到一定的安全性。此外,本論文也提出一個改進的安全架構,加入信任值、金鑰更新等概念,以加強此安全架構的安全性。最後,本論文針對機密性、資料的可信性、資料的可用性與偽造訊息的預期過濾位置來分析本架構的安全強度,並以儲存成本、計算成本與通訊成本來分析效能。依結果顯示,本論
    文所提之改進安全架構能在不增加過多的成本下,提升車載網路的安全性。


    The security issue is one of important issues in vehicular ad hoc networks (VANETs). To ensure the security of VANETs, most researches assumed that a third party or a basic infrastructure exists and vehicles can communicate with the certificate authority via road side units. However, the third party may not exist or has been attacked or even compromised by the attackers within the communication range of the vehicles. In this thesis, we propose a secure cluster-based framework without the third party in VANETs. The proposed framework adopts some concepts of PCREF [1] to enable the polynomial-based threshold authentication and en-route filtering scheme, reaching the security without the third party.
    In addition, we propose another improved secure framework by employing the
    concept of trust values for vehicles and updating of keys to enhance the security
    of the framework. We then analyze the performance in terms of overhead of
    storage, computation, communication as well as security strength regarding confidentiality,
    data authenticity, data availability, and expected filtering position of the
    bogus report. Through the performance and security strength analyses, we conclude
    that the improved framework proposed in this thesis enhances the security
    of VANETs greatly without an unbearable cost.

    中文摘要 英文摘要 目錄 表目錄 圖目錄 第一章、緒論 1 第二章、相關文獻回顧 4 2.1 車載網路的群集生成 4 2.2 車載網路上的攻擊行為 6 2.3 資料的安全需求 8 2.4 相關安全機制 9 第三章、系統配置與安全架構 11 3.1 SFTAEF 11 3.1.1 系統初始化 13 3.1.2 加解密機制與金鑰交換機制 13 3.1.3 群集生成 14 3.1.4 產生訊息認證多項式與報告 16 3.1.5 訊息驗證與途中過濾機制 19 3.1.6 接收報告 19 3.2 SFTAEF-T 20 3.2.1 更新群集金鑰 22 3.2.2 信任值(Trust Value) 23 3.2.3 訊息認證多項式的選取與驗證 24 3.2.4 回覆警告訊息 25 第四章、安全與安全強度分析 26 4.1 SFTAEF 與SFTAEF-T 可防禦攻擊之安全分析 26 4.2 機密性(Confidentiality) 安全強度分析 27 4.2.1 SFTAEF 與SFTAEF-T 之機密性安全強度分析 29 4.2.2 比較SFTAEF、SFTAEF-T 之機密性安全強度 30 4.3 資料可信性(Data Authenticity) 安全強度分析 31 4.3.1 SFTAEF 之資料可信性安全強度分析 31 4.3.2 SFTAEF-T 之資料可信性安全強度分析 32 4.3.3 比較SFTAEF、SFTAEF-T 之資料可信性安全強度 33 4.4 資料可用性(Data Availability) 安全強度分析 34 4.4.1 SFTAEF 之資料可用性安全強度分析 34 4.4.2 SFTAEF-T 之資料可用性安全強度分析 35 4.4.3 比較SFTAEF、SFTAEF-T 之資料可用性安全強度 36 4.5 偽造訊息的預期過濾位置 38 4.5.1 SFTAEF 之偽造訊息的預期過濾位置 38 4.5.2 SFTAEF-T 之偽造訊息的預期過濾位置 39 4.5.3 比較SFTAEF、SFTAEF-T 之偽造訊息的預期過濾位置 40 第五章、成本效能分析 41 5.1 儲存成本(Storage Overhead) 41 5.2 計算成本(Computation Overhead) 43 5.3 通訊成本(Communication Overhead) 45 第六章、總結 46 參考文獻 47 誌謝 51

    [1] X. Yang, J. Lin, W. Yu, P.-M. Moulema, X. Fu, and W. Zhao, “A novel enroute filtering scheme against false data injection attacks in cyber-physical
    networked systems,” IEEE Transactions on Computers, vol. 64, no. 1, pp. 4–
    18, Jan. 2015.
    [2] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless access in vehicular environments,” in Proc. IEEE Vehicular Technology Conference (VTC Spring), pp. 2036–2040, May 2008.
    [3] J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the united states,” Proc. of the IEEE, vol. 99, no. 7, pp. 1162–1182, Jul. 2011.
    [4] S. Vodopivec, J. Bešter, and A. Kos, “A survey on clustering algorithms for
    vehicular ad-hoc networks,” in Proc. International Conference on Telecommunications and Signal Processing (TSP), pp. 52–56, Jul. 2012.
    [5] S. M. AlMheiri and H. S. AlQamzi, “MANETs and VANETs clustering algorithms: a survey,” in Proc. IEEE GCC Conference and Exhibition (GCCCE), pp. 1–6, Feb. 2015.
    [6] N. Maslekar, M. Boussedjra, J. Mouzna, and H. Labiod, “C-DRIVE: clustering based on direction in vehicular environment,” in Proc. IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5, Feb. 2011.
    [7] N. Maslekar, J. Mouzna, H. Labiod, M. Devisetty, and M. Pai, “Modified CDRIVE: Clustering based on direction in vehicular environment,” in IEEE Intelligent Vehicles Symposium (IV), pp. 845–850, Jun. 2011.
    [8] A. Daeinabi, A. G. P. Rahbar, and A. Khademzadeh, “VWCA: An efficient clustering algorithm in vehicular ad hoc networks,” Journal of Network and Computer Applications, vol. 34, no. 1, pp. 207–222, Jan. 2011.
    [9] Z. Y. Rawashdeh and S. M. Mahmud, “A novel algorithm to form stable clusters in vehicular ad hoc networks on highways,” EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1, pp. 1–13, Jan. 2012.
    [10] F. Qu, Z. Wu, F.-Y. Wang, and W. Cho, “A security and privacy review of VANETs,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 2985–2996, Dec. 2015.
    [11] L. Bariah, D. Shehada, E. Salahat, and C. Y. Yeun, “Recent advances in VANET security: A survey,” in Proc. IEEE Vehicular Technology Conference (VTC Fall), pp. 1–7, Sep. 2015.
    [12] M. S. Al-Kahtani, “Survey on security attacks in vehicular ad hoc networks (VANETs),” in Proc. International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–9, Dec. 2012.
    [13] J. T. Isaac, S. Zeadally, and J. S. Camara, “Security attacks and solutions for vehicular ad hoc networks,” IET Communications, vol. 4, no. 7, pp. 894–903, Apr. 2010.
    [14] S. Manvi, M. Kakkasageri, and D. Adiga, “Message authentication in vehicular ad hoc networks: ECDSA based approach,” in Proc. International Conference on Future Computer and Communication (ICFCC), pp. 16–20, Apr. 2009.
    [15] L. He and W. T. Zhu, “Mitigating DoS attacks against signature-based authentication in VANETs,” in Proc. IEEE International Conference on Computer Science and Automation Engineering (CSAE), vol. 3, pp. 261–265, May 2012.
    [16] S. Park, B. Aslam, D. Turgut, and C. C. Zou, “Defense against sybil attack in vehicular ad hoc network based on roadside unit support,” in Proc. IEEE Military Communications Conference (MILCOM), pp. 1–7, Oct. 2009.
    [17] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: a defense against wormhole attacks in wireless networks,” in Proc. IEEE Annual Joint Confer- ence on Computer and Communications (INFOCOM), vol. 3, pp. 1976–1986, Mar. 2003.
    [18] J. A. Martinez, D. Vigueras, F. J. Ros, and P. M. Ruiz, “Evaluation of the use of guard nodes for securing the routing in VANETs,” Journal of Communications and Networks, vol. 15, no. 2, pp. 122–131, Apr. 2013.
    [19] S.-J. Horng, S.-F. Tzeng, Y. Pan, P. Fan, X. Wang, T. Li, and M. K. Khan, “b-SPECS+: Batch verification for secure pseudonymous authentication in VANET,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 11, pp. 1860–1875, Nov. 2013.
    [20] J. M. d. Fuentes, A. I. González-Tablas, and A. Ribagorda, “Overview of security issues in vehicular ad-hoc networks,” Handbook of Research on Mobility and Computing, 2010.
    [21] H. Al Falasi and E. Barka, “Revocation in VANETs: A survey,” in Proc. International Conference on Innovations in Information Technology (IIT), pp. 214–219, Apr. 2011.
    [22] A. Wasef and X. Shen, “EMAP: Expedite message authentication protocol for vehicular ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 1, pp. 78–89, Jan. 2013.
    [23] X. Zhu, S. Jiang, L. Wang, and H. Li, “Efficient privacy-preserving authentication for vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 907–919, Feb. 2014.
    [24] M.-C. Chuang and J.-F. Lee, “TEAM: Trust-extended authentication mechanism for vehicular ad hoc networks,” IEEE Systems Journal, vol. 8, no. 3, pp. 749–758, Sep. 2014.
    [25] L. Chen, S.-L. Ng, and G. Wang, “Threshold anonymous announcement in VANETs,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 3, pp. 605–615, Mar. 2011.
    [26] V. Daza, J. Domingo-Ferrer, F. Sebé, and A. Viejo, “Trustworthy privacypreserving car-generated announcements in vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 4, pp. 1876–1886, May 2009.
    [27] J. Shao, X. Lin, R. Lu, and C. Zuo, “A threshold anonymous authentication protocol for VANETs,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1711–1720, Mar. 2016.
    [28] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979.
    [29] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

    QR CODE