簡易檢索 / 詳目顯示

研究生: 許竣愷
Jun-Kai Xu
論文名稱: 新型鋰離子電池安全性添加劑應用於三元正極材料 Li[Ni0.6Co0.2Mn0.2]O2
The Application of Novel Lithium Ion Batteries Safety Additives in Cathode Material Li[Ni0.6Co0.2Mn0.2]O2
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
許榮木
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 鋰離子電池正極材料安全性添加劑寡聚物
外文關鍵詞: Lithium-ion batteries, Cathode materials, Safety, Additives, Oligomers
相關次數: 點閱:479下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II 第一章 緒論 1 1-1 前言 1 1-2 研究背景 3 1-2-1 鋰離子電池工作原理 3 1-2-2 正極材料 4 1-2-3 負極材料 6 1-2-4 電解質 9 1-3 研究動機 11 第二章 文獻回顧 12 2-1 三元正極材料發展與介紹 12 2-2 鋰電池安全性改善方法 14 2-2-1 正增溫係數層 14 2-2-2 電解液陰極保護添加劑 16 2-2-3 電解液阻燃添加劑 17 2-2-4 正極材料添加劑 17 第三章 實驗藥品、儀器與方法 19 3-1 實驗藥品 19 3-2 實驗儀器 19 3-3 實驗方法 21 3-3-1 Benchmark 樣品製備 21 3-3-2 正極漿料製備 (Blank) 21 3-3-3 正極漿料製備 (Additives) 22 3-3-4 極片製備 22 3-3-5 鈕扣型半電池組裝 23 3-3-6 DSC樣品製備 (A12, Benchmark存放穩定度測試) 23 3-3-7 DSC樣品製備 (正極極片熱穩定性測試) 24 3-3-8 TGA樣品製備 (純材料) 24 3-3-9 TGA樣品製備 (極片) 24 第四章 結果與討論 25 4-1 添加劑存放熱穩定性分析 25 4-2 添加劑熱穩定性分析 28 4-3 循環伏安法 (CV) 29 4-3-1 Blank NCM622 循環伏安法 29 4-3-2 A12 循環伏安法 30 4-3-3 Benchmark 循環伏安法 32 4-4 常溫初始充放電及循環壽命測試 34 4-4-1 常溫初始充放電測試 34 4-4-2 常溫循環壽命測試 36 4-5 常溫電化學交流阻抗分析 39 4-5-1 Blank NCM622 常溫電化學交流阻抗分析 40 4-5-2 A12 常溫交流阻抗分析 41 4-5-3 Benchmark 常溫交流阻抗分析 43 4-6 常溫倍率性能測試 45 4-7 高溫循環壽命測試 47 4-8 高溫電化學交流阻抗分析 49 4-9 高溫倍率性能測試 51 4-10 快速充放電循環壽命測試 53 4-11 正極極片熱穩定性測試 55 4-12 正極極片SEM分析 57 4-12-1 Blank NCM622極片 SEM 57 4-12-2 含添加劑極片SEM 57 第五章 結論 60 參考文獻 61

1. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
2. Nagaura, T., Lithium ion rechargeable battery. Progress in Batteries & Solar Cells, 1990. 9: p. 209.
3. 陳金銘, 啟動綠能電動車之鑰-高能量電池. 工業材料雜誌, 2021. 411: p. 52-53.
4. Tarascon, J.-M., et al., Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011: p. 171-179.
5. Abraham, K., Prospects and limits of energy storage in batteries. The journal of physical chemistry letters, 2015. 6(5): p. 830-844.
6. Whittingham, M.S., et al., The lithium intercalates of the transition metal dichalcogenides. Materials research bulletin, 1975. 10(5): p. 363-371.
7. Thackeray, M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
8. Padhi, A.K., et al., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997. 144(4): p. 1188.
9. Sobkowiak, A., et al., Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chemistry of Materials, 2013. 25(15): p. 3020-3029.
10. Meng, Y.S., et al., Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries. Accounts of Chemical Research, 2013. 46(5): p. 1171-1180.
11. Rozier, P., et al., Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. Journal of The Electrochemical Society, 2015. 162(14): p. A2490.
12. Manthiram, A., et al., Nickel‐rich and lithium‐rich layered oxide cathodes: progress and perspectives. Advanced Energy Materials, 2016. 6(1): p. 1501010.
13. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
14. Fouchard, D., et al., The molicel® rechargeable lithium system: Multicell aspects. 1987. 21(3-4): p. 195-205.
15. Laman, F., et al., Effect of discharge current on cycle life of a rechargeable lithium battery. 1988. 24(3): p. 195-206.
16. Fong, R., et al., Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 1990. 137(7): p. 2009.
17. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
18. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
19. Mahmood, N., et al., Nickel Sulfide/Nitrogen‐Doped Graphene Composites: Phase‐Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small, 2013. 9(8): p. 1321-1328.
20. Zhang, C., et al., Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced materials, 2013. 25(35): p. 4932-4937.
21. Boukamp, B., et al., All‐solid lithium electrodes with mixed‐conductor matrix. Journal of the Electrochemical Society, 1981. 128(4): p. 725.
22. Idota, Y., et al., Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397.
23. Dey, A., Electrochemical alloying of lithium in organic electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547.
24. Kumar, R., et al., In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Letters, 2016. 1(4): p. 689-697.
25. Kennedy, T., et al., Advances in the application of silicon and germanium nanowires for high‐performance lithium‐ion batteries. Advanced Materials, 2016. 28(27): p. 5696-5704.
26. Dahn, J.R., et al., Mechanisms for lithium insertion in carbonaceous materials. Science, 1995. 270(5236): p. 590-593.
27. Zhang, Z., et al., LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells. Journal of Power Sources, 2010. 195(21): p. 7397-7402.
28. Wang, H., et al., From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. Journal of power sources, 2007. 169(2): p. 375-380.
29. Aurbach, D., et al., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2-3): p. 247-254.
30. Marom, R., et al., Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. Journal of the Electrochemical Society, 2010. 157(8): p. A972.
31. Jung, C., Electrochemical absorption effect of BF4 anion salt on SEI layer formation. Solid State Ionics, 2008. 179(27-32): p. 1717-1720.
32. Doucey, L., et al., A study of the Li/Li+ couple in DMC and PC solvents: part 1: characterization of LiAsF6/DMC and LiAsF6/PC solutions. Electrochimica acta, 1999. 44(14): p. 2371-2377.
33. Han, H.-B., et al., Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011. 196(7): p. 3623-3632.
34. Garcia, B., et al., Aluminium corrosion in room temperature molten salt. Journal of power sources, 2004. 132(1-2): p. 206-208.
35. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
36. Garche, J., et al., Encyclopedia of electrochemical power sources. 2013: Newnes.
37. Ohzuku, T., et al., Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry letters, 2001. 30(8): p. 744-745.
38. Ohzuku, T., et al., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 2001. 30(7): p. 642-643.
39. Noh, H.-J., et al., Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013. 233: p. 121-130.
40. Woo, S.-U., et al., Significant improvement of electrochemical performance of AlF3-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode materials. Journal of the Electrochemical Society, 2007. 154(11): p. A1005.
41. Abraham, D., et al., Surface changes on LiNi0. 8Co0. 2O2 particles during testing of high-power lithium-ion cells. Electrochemistry communications, 2002. 4(8): p. 620-625.
42. Feng, X., et al., A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry communications, 2004. 6(10): p. 1021-1024.
43. Wang, E., et al., Stability of lithium ion spinel cells. III. Improved life of charged cells. Journal of the Electrochemical Society, 2000. 147(11): p. 4023.
44. K. Takechi, T. Shiga, U.S. Patent 6,235,431 (2001).
45. Jiang, J., et al., Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt. Journal of The Electrochemical Society, 2004. 151(4): p. A609.
46. Wang, X., et al., Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. Journal of The Electrochemical Society, 2001. 148(10): p. A1058.
47. Xu, K., et al., An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. Journal of The Electrochemical Society, 2002. 149(5): p. A622.
48. Hyung, Y.E., et al., Flame-retardant additives for lithium-ion batteries. Journal of power sources, 2003. 119: p. 383-387.
49. Yao, X., et al., Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. Journal of power sources, 2005. 144(1): p. 170-175.
50. Xu, K., et al., Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties. Journal of the Electrochemical Society, 2003. 150(2): p. A161.
51. Ding, M.S., et al., Effects of tris (2, 2, 2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3: 3: 4 weight ratios. Journal of The Electrochemical Society, 2002. 149(11): p. A1489.
52. Xu, K., et al., Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. Journal of the Electrochemical Society, 2002. 149(8): p. A1079.
53. Granzow, A., Flame retardation by phosphorus compounds. Accounts of Chemical Research, 1978. 11(5): p. 177-183.
54. K. Yokoyama, T. Sasano, A. Hiwara, U.S. Patent 6,010,806 (2000).
55. Wang, Z., et al., Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 as cathode material for Li-ion batteries. Journal of Power Sources, 2013. 236: p. 25-32.
56. Yang, K., et al., Significant improvement of electrochemical properties of AlF3-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode materials. Electrochimica Acta, 2012. 63: p. 363-368.
57. Liu, H.-M., et al., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. RSC Advances, 2014. 4(99): p. 56147-56155.
58. Wang, F.-M., et al., Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery. Journal of Membrane Science, 2011. 368(1-2): p. 165-170.
59. Tao, T., et al., Enhanced electrochemical performance of ZrO2 modified LiNi0. 6Co0. 2Mn0. 2O2 cathode material for lithium ion batteries. Ceramics International, 2017. 43(17): p. 15173-15178.
60. Hu, Z., et al., Vanadium-doped LiNi1/3Co1/3Mn1/3O2 with decreased lithium/nickel disorder as high-rate and long-life lithium ion battery cathode. Sci. Adv. Today, 2015. 1: p. 25218.
61. Schipper, F., et al., Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2. Journal of Materials Chemistry A, 2016. 4(41): p. 16073-16084.
62. Sim, S.-J., et al., Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Scientific reports, 2019. 9(1): p. 1-8.
63. Barai, A., et al., A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. Journal of Power Sources, 2015. 280: p. 74-80.
64. Dees, D., et al., Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. Journal of the Electrochemical Society, 2005. 152(7): p. A1409.
65. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
66. Thomas, M., et al., AC impedance analysis of polycrystalline insertion electrodes: application to Li1− x CoO2. Journal of the Electrochemical Society, 1985. 132(7): p. 1521.
67. Nobili, F., et al., An AC Impedance Spectroscopic Study of Li x CoO2 at Different Temperatures. The Journal of Physical Chemistry B, 2002. 106(15): p. 3909-3915.
68. Wang, C., et al., Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance. Electrochemical and Solid State Letters, 2007. 10(3): p. A65.
69. Doyle, M., et al., Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997. 27(7): p. 846-856.
70. Logan, E., et al., A study of the physical properties of Li-ion battery electrolytes containing esters. Journal of The Electrochemical Society, 2018. 165(2): p. A21.
71. Zhuang, Q.-C., et al., An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. The Journal of Physical Chemistry C, 2010. 114(18): p. 8614-8621.

無法下載圖示 全文公開日期 2031/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE