簡易檢索 / 詳目顯示

研究生: 謝秉臻
Bing-Jen Hsieh
論文名稱: Development of Novel TiO2-supported Pt Nanocatalyst for Oxygen Reduction Reaction
Development of Novel TiO2-supported Pt Nanocatalyst for Oxygen Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
楊明長
Ming-Chang Yang
林智汶
Chi-Wen Lin
杜景順
Jing-Shan Do
王丞浩
Chen-Hao Wang
林昇佃
Shawn D. Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 171
中文關鍵詞: 金屬載體強相互作用力氧氣還原反應觸媒載體電化學參雜氧空缺燃料電池
外文關鍵詞: Strong metal-support interaction, Oxygen reduction reaction, Catalyst support, Electrochemistry, Doping, Platinum, Oxygen vacancies, Fuel cells
相關次數: 點閱:293下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為了提升燃料電池之效率以及耐久性,開發了取代碳載體的材料,以提升觸媒活性及耐久性,並且由於活性提升,鉑的使用量得以減少;耐久性的提升,使燃料電池每單位時間的運作成本更可以進一步減少。
本研究的第一部分為:“調整金屬載體相互作用力以提升鉑奈米觸媒於二氧化鈦載體上的活性以及穩定性”。本研究開發了新穎的觸媒處理程序,經由增強金屬載體強相互作用力(strong metal-support interaction, SMSI),而得以大幅提升觸媒活性以及穩定性。此外,首次利用電化學方法作為高效率的表面覆蓋檢測工具,並提供了第一個低溫觸發SMSI的直接證據(200˚C,低於文獻上的500˚C)。
研究的第二部分為:“負載於雙掺雜二氧化鈦載體上的白金作為高活性及高耐久性的氧氣還原反應催化劑”。以鎢或鈮作為陽離子,氮作為陰離子,合成雙摻雜二氧化鈦,負載其上的鉑奈米粒子展現了更好的觸媒活性以及穩定性。並首次結合X射線吸收光譜(X-ray absorption spectroscopy, XAS)及密度泛函理論(density function theory, DFT)以解釋材料表面缺陷如何影響鉑與二氧化鈦載體之間的相互作用,並改變所得到的觸媒性質。


In order to make fuel cell technology competitive with other green energy resources, the activity and durability must be enhanced, and the cost of fuel cell must be reduced. To achieve that target, improve the nature of platinum or replace the carbon support can enhance both activity and durability of the catalyst, the use of platinum on fuel cells can be reduced due to the enhancement of its catalytic activity, and the increased durability is also expected to has further reduced the operation cost of the novel catalyst per running hour.
Therefore, our researches focus on enhancing catalyst activity and durability on oxygen reduction reaction catalyst. The first part of this work is “Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts”. In this research, strong metal-support interaction (SMSI) in TiO2-supported Pt can be induced at 200˚C by H2 reduction, without high temperature treatment. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiOx species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO2-supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the oxygen reduction reaction (ORR) activity and stability is also proved applicable to Pt/Ti0.9Nb0.1O2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO2-supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to test the presence of coverage state before combining with other physical analysis.
The second part of this work is “Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst”. In this research, dual-doped TiO2 was successfully synthesized by using tungsten or niobium as the cation and nitrogen as the anion and, as compared with single-doped TiO2, provided a higher electron conductivity and improved physical properties. Platinum nanoparticles loaded on these materials showed better electrochemical performance, and the Pt/Ti0.9Nb0.1NxOy and Pt/Ti0.8W0.2NxOy catalysts were 2.6-3.7 times more active than the Pt/Ti0.9Nb0.1Oy and Pt/Ti0.8W0.2Oy catalysts without nitrogen doping. Additionally, there was an activity loss of 22.9%, as compared with 81% in Pt/C after 30000 CV cycles, a value exceeding the US Department of Energy (DOE) stability target. Dual doping not only enhances the electron conductivity but also changes the electronic state of Pt on the support materials, thus allowing for more active and stable catalysts. Both X-ray absorption spectroscopy (XAS) and density functional theory (DFT) studies were undertaken to demonstrate how oxygen vacancies formation affects the interactions between Pt and the single- or dual-doped TiO2 supports and manipulates the physical and chemical properties of the resulting catalysts. Thus, these catalytic supports are strong candidates for proton exchange membrane fuel cell applications.

摘要 I Abstract III Acknowledgement V Table of Contents VII List of tables X List of schemes XII List of figures XIII List of abbreviations XXI Chapter 1 Introduction 1 1.1 Overview about fuel cell technology 1 1.1.1 Proton exchange membrane fuel cells 4 1.1.2 Challenge of proton exchange membrane fuel cells 7 1.2 Catalyst of oxygen reduction reaction 12 1.3 Catalyst support for oxygen reduction reaction 12 1.3.1 Strong metal support interaction between catalyst and support 13 1.3.2 Conductivity issue of metal oxide supports 15 1.4 Motivation and objective of the research 18 Chapter 2 Material and Methods 19 2.1 Materials 19 2.2 Methods 19 2.2.1 Brunauer-Emmett-Teller (BET) surface area 19 2.2.2 Electronic conductivity 19 2.2.3 X-ray diffraction (XRD) measurements 19 2.2.4 Raman spectra 20 2.2.5 X-ray photoelectron spectroscopy (XPS) measurement 20 2.2.6 X-ray absorption spectroscopy (XAS) measurement 21 2.2.7 Energy dispersive X-ray microanalyzer (EDX) 21 2.2.8 Transmission Electron Microscopy (TEM) and High-resolution Transmission Electron Microscopy (HRTEM) 21 2.2.9 Electrochemical Measurements 22 2.2.10 Computational study 23 2.3 Experiment section 23 2.3.1 Synthesis of Pt/TiO2 catalyst 23 2.3.2 Hydrogen treatment 24 2.3.3 Hydrofluoric acid treatment 25 2.3.4 Synthesis of Pt/Ti0.9Nb0.1O2 catalyst 26 2.3.5 Synthesis of W-doped TiO2 nanoparticle supports 28 2.3.6 Synthesis of dual-doped Ti0.8W0.2NxOy and Ti0.9Nb0.1NxOy nanoparticle supports 30 2.3.7 Pt loading on dual-doped TiO2 supports 31 Chapter 3 Tuning Metal Support Interactions Enhances the Activity and Durability of TiO2-supported Pt Nanocatalysts 35 3.1 Introduction 35 3.2 Results and discussions 37 3.2.1 Characterization of Pt/TiO2 and Pt/TiO2-HT catalysts 37 3.2.2 Electrochemical properties of Pt/TiO2, Pt/TiO2-HT, and Pt/TiO2-HFT catalysts 43 3.2.3 XAS measurement of Pt/TiO2, Pt/TiO2-HT, and Pt/TiO2-HFT catalysts 48 3.2.4 Stability test of Pt/TiO2, and Pt/TiO2-HFT catalysts 51 3.2.5 HFT treatment for Pt/TiNbO2 53 3.3 Summary 57 Chapter 4 Platinum Loaded on Dual-Doped TiO2 as an Active and Durable Oxygen Reduction Reaction Catalyst 59 4.1 Introduction 59 4.2 Results and discussion 63 4.2.1 Optimization of W-doped TiO2 63 4.2.2 Characterization of Ti0.8W0.2NxOy and Ti0.9Nb0.1NxOy supports 71 4.2.3 Electrochemical properties of Pt/Ti0.8W0.2NxOy and Pt/Ti0.9Nb0.1NxOy catalysts 76 4.2.4 XAS measurement and DFT study 82 4.3 Summary 94 Chapter 5 Conclusions and Perspectives 97 Supporting Information 99 References 131 Curriculum Vitae 143 List of publications 144 List of conferences/workshops 145

1 Perry, M. L. & Fuller, T. F. A Historical Perspective of Fuel Cell Technology in the 20th Century. Journal of The Electrochemical Society 149, S59, doi:10.1149/1.1488651 (2002).
2 WHAT TYPES OF FUEL CELLS ARE THERE?, <http://www.chfca.ca/education-centre/how-fuel-cells-work/> (2014).
3 Tewari, A., Sambhy, V., Urquidi Macdonald, M. & Sen, A. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells. Journal of Power Sources 153, 1-10, doi:http://dx.doi.org/10.1016/j.jpowsour.2005.03.192 (2006).
4 Varcoe, J. R. & Slade, R. C. Prospects for alkaline anion‐exchange membranes in low temperature fuel cells. Fuel Cells 5, 187-200 (2005).
5 Al-Saleh, M. A., Gültekin, S., Al-Zakri, A. S. & Celiker, H. Effect of carbon dioxide on the performance of Ni/PTFE and Ag/PTFE electrodes in an alkaline fuel cell. Journal of Applied Electrochemistry 24, 575-580, doi:10.1007/bf00249861 (1994).
6 Thanh Ho, V. T., Pillai, K. C., Chou, H.-L., Pan, C.-J., Rick, J., Su, W.-N., Hwang, B.-J., Lee, J.-F., Sheu, H.-S. & Chuang, W.-T. Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science 4, 4194, doi:10.1039/c1ee01522b (2011).
7 Hogarth, M. & Hards, G. Direct methanol fuel cells. Platinum Metals Review 40, 150-159 (1996).
8 Wang, C.-Y. in Mini-Micro Fuel Cells: Fundamentals and Application. 235-242, doi:10.1007/978-1-4020-8295-5 (Springer, 2008).
9 Li, Q., Aili, D., Hjuler, H. A. & Jensen, J. O. High temperature polymer electrolyte membrane fuel cells. (Springer, 2016).
10 Jacobson, D. PEM Fuel Cells., <http://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html> (2006).
11 Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 88, 981-1007, doi:10.1016/j.apenergy.2010.09.030 (2011).
12 Cheng, F. & Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 41, 2172-2192, doi:10.1039/C1CS15228A (2012).
13 Wang, Z.-L., Xu, D., Xu, J.-J. & Zhang, X.-B. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews 43, 7746-7786, doi:10.1039/C3CS60248F (2014).
14 Ghosh, S. & Basu, R. N. Electrochemistry of Nanostructured Materials: Implementation in Electrocatalysis for Energy Conversion Applications. Journal of the Indian Institute of Science 96, 293-313 (2016).
15 Shapley, P. PEMFCs cathode reaction, <http://butane.chem.uiuc.edu/pshapley/GenChem2/C10/1.html> (2012).
16 Jones, R. H. & Thomas, G. J. Materials for the hydrogen economy. (CRC Press, 2007).
17 Wang, Y.-J., Wilkinson, D. P. & Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews 111, 7625-7651, doi:10.1021/cr100060r (2011).
18 Luo, Z., Li, D., Tang, H., Pan, M. & Ruan, R. Degradation behavior of membrane–electrode-assembly materials in 10-cell PEMFC stack. International journal of hydrogen energy 31, 1831-1837 (2006).
19 Meier, J. C., Galeano, C., Katsounaros, I., Topalov, A. A., Kostka, A., Schüth, F. & Mayrhofer, K. J. J. Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis 2, 832-843, doi:10.1021/cs300024h (2012).
20 Mitsushima, S., Kawahara, S., Ota, K.-i. & Kamiya, N. Consumption rate of Pt under potential cycling. Journal of The Electrochemical Society 154, B153-B158 (2007).
21 Ball, S. C., Hudson, S. L., Leung, J. H., Russell, A. E., Thompsett, D. & Theobald, B. R. Mechanisms of activity loss in PtCo alloy systems. ECS Transactions 11, 1247-1257 (2007).
22 Zhang, S., Yuan, X.-Z., Hin, J. N. C., Wang, H., Friedrich, K. A. & Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources 194, 588-600 (2009).
23 De Bruijn, F., Dam, V. & Janssen, G. Review: durability and degradation issues of PEM fuel cell components. Fuel cells 8, 3-22 (2008).
24 Peighambardoust, S. J., Rowshanzamir, S. & Amjadi, M. Review of the proton exchange membranes for fuel cell applications. International journal of hydrogen energy 35, 9349-9384 (2010).
25 Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. & Tisack, M. E. Advanced materials for improved PEMFC performance and life. Journal of Power Sources 131, 41-48 (2004).
26 Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, M., Gasteiger, H. & Abbott, J. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel cells 5, 302-308 (2005).
27 Cindrella, L., Kannan, A., Lin, J., Saminathan, K., Ho, Y., Lin, C. & Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells—A review. Journal of Power Sources 194, 146-160 (2009).
28 Stevens, D. & Dahn, J. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43, 179-188 (2005).
29 Cai, M., Ruthkosky, M. S., Merzougui, B., Swathirajan, S., Balogh, M. P. & Oh, S. H. Investigation of thermal and electrochemical degradation of fuel cell catalysts. Journal of Power Sources 160, 977-986 (2006).
30 Vince Contini, K. M., Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle. 2012 Auto Fuel Cell System: Stack and System Cost Results. 17 (Department of Energy, 2013).
31 HYDROGEN DELIVERY, <https://energy.gov/eere/fuelcells/hydrogen-delivery> (2014).
32 Simbeck, Dale, and S. F. A. Pacific. "Biggest Challenge for the Hydrogen Economy Hydrogen Production & Infrastructure Costs." (2003).
33 Kendall, K. & Pollet, B. 4.12-Hydrogen and Fuel Cells in Transport. (2012).
34 HYDROGEN STORAGE, <https://energy.gov/eere/fuelcells/hydrogen-storage> (2015).
35 Erable, B., Féron, D. & Bergel, A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. ChemSusChem 5, 975-987 (2012).
36 Fuller, T., Cleghorn, S., Zhao, T., Haug, A., Lamy, C., Gasteiger, H., Ramani, V., Nguyen, T., Bock, C. & Ota, K. Proton Exchange Membrane Fuel Cells 7. (2007).
37 Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44, 2168-2201, doi:10.1039/c4cs00484a (2015).
38 Hu, Y., Zhang, H., Wu, P., Zhang, H., Zhou, B. & Cai, C. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys Chem Chem Phys 13, 4083-4094, doi:10.1039/c0cp01998d (2011).
39 Bing Joe Hwang, S. M. S. K., Ching-Hsiang Chen, & Monalisa, M.-Y. C., Din-Goa Liu, and Jyh-Fu Lee. An Investigation of Structure-Catalytic Activity Relationship for Pt-Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. J. Phys. Chem. C 111, 15267-15276 (2007).
40 Feng-Ju Lai, W.-N. S., Loka Subramanyam Sarma, Din-Goa Liu, Cheng-An Hsieh, Jyh-Fu Lee, and Bing-Joe Hwang. Chemical Dealloying Mechanism of Bimetallic Pt-Co Nanoparticles and Enhancement of Catalytic Reactivity Toward to Oxygen Reduction Reaction. Chem. Eur. J. 16, 4602-4611 (2010).
41 Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z. & Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Research 8, 2777-2788, doi:10.1007/s12274-015-0784-0 (2015).
42 Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12, 765-771, doi:10.1038/nmat3668 (2013).
43 Fadlilatul Taufany, C.-J. P., Hung-Lung Chou, John Rick, Young-Siou Chen, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, and Bing-Joe Hwang. Relating Structural Aspects of Bimetallic Pt3Cr1/C Nanoparticles to Their Electrocatalytic Activity, Stability, and Selectivity in the Oxygen Reduction Reaction. Chem. Eur. J. 17, 10723-10734 (2011).
44 Li, Q., Wu, L., Wu, G., Su, D., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A. & Sun, S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15, 2468-2473, doi:10.1021/acs.nanolett.5b00320 (2015).
45 Di-Yan Wang, H.-L. C., Ching-Che Cheng, Yu-Yan Wu, Chin-Ming Tsai, Heng-Yi Lin, Yuh-Lin Wang, Bing Joe Hwang, and Chia-Chun Chen. FePt Nanodendrites with High-index Facets as Active Electrocatalysts for Oxygen Reduction Reaction. Nano Energy 11, 631-639 (2015).
46 Chen, Z., Waje, M., Li, W. & Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed Engl 46, 4060-4063, doi:10.1002/anie.200700894 (2007).
47 Fadlilatul Taufany, C.-J. P., John Rick, Hung-Lung Chou, Mon-Che Tsai, Bing-Joe Hwang, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, Yao-Chang Lee, and Ching-Iue Chen. Kinetically Controlled Autocatalytic Chemical Process for Bulk Production of Bimetallic CoreShell Structured Nanoparticles. ACS Nano 5, 9370 (2011).
48 Van Thi Thanh Ho, C.-J. P., John Rick, Wei-Nien Su, and Bing-Joe Hwang. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133, 11716-11724, doi:10.1021/ja2039562 (2011).
49 Akalework, N. G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.-F., Lin, J.-M., Tsai, L.-D. & Hwang, B.-J. Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry 22, 20977, doi:10.1039/c2jm34361d (2012).
50 Kumar, A. & Ramani, V. Strong Metal–Support Interactions Enhance the Activity and Durability of Platinum Supported on Tantalum-Modified Titanium Dioxide Electrocatalysts. ACS Catalysis 4, 1516-1525, doi:10.1021/cs500116h (2014).
51 Sun, S., Zhang, G., Geng, D., Chen, Y., Li, R., Cai, M. & Sun, X. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew Chem Int Ed Engl 50, 422-426, doi:10.1002/anie.201004631 (2011).
52 Zhang, G., Sun, S., Cai, M., Zhang, Y., Li, R. & Sun, X. Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction. Sci Rep 3, 1526, doi:10.1038/srep01526 (2013).
53 Tauster, S. J., Fung, S. C. & Garten, R. L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Ti02. J. Am. Chem. Soc. 100, 170-175 (1978).
54 Sá, J., Bernardi, J. & Anderson, J. A. Imaging of low temperature induced SMSI on Pd/TiO2 catalysts. Catalysis Letters 114, 91-95, doi:10.1007/s10562-007-9049-1 (2007).
55 O'Shea, V. A., Galvan, M. C., Prats, A. E., Campos-Martin, J. M. & Fierro, J. L. Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chem Commun (Camb) 47, 7131-7133, doi:10.1039/c1cc10318k (2011).
56 Li, Y., Xu, B., Fan, Y., Feng, N., Qiu, A., He, J. M. J., Yang, H. & Chen, Y. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. Journal of Molecular Catalysis A: Chemical 216, 107-114, doi:10.1016/j.molcata.2004.02.007 (2004).
57 Sa, J., Berger, T., Fottinger, K., Riss, A., Anderson, J. & Vinek, H. Can TiO2 promote the reduction of nitrates in water? Journal of Catalysis 234, 282-291, doi:10.1016/j.jcat.2005.06.015 (2005).
58 Li, Y., Fan, Y., Yang, H., Xu, B., Feng, L., Yang, M. & Chen, Y. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chemical Physics Letters 372, 160-165, doi:10.1016/s0009-2614(03)00383-x (2003).
59 Fu, Q., Wagner, T., Olliges, S. & Carstanjen, H.-D. Metal-Oxide Interfacial Reactions: Encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 109, 944-951 (2005).
60 Ignaszak, A., Song, C., Zhu, W., Wang, Y.-J., Zhang, J., Bauer, A., Baker, R., Neburchilov, V., Ye, S. & Campbell, S. Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochimica Acta 75, 220-228, doi:10.1016/j.electacta.2012.04.111 (2012).
61 Du, Q., Wu, J. & Yang, H. Pt@Nb-TiO2Catalyst Membranes Fabricated by Electrospinning and Atomic Layer Deposition. ACS Catalysis 4, 144-151, doi:10.1021/cs400944p (2014).
62 Tsai, M.-C., Nguyen, T.-T., Akalework, N. G., Pan, C.-J., Rick, J., Liao, Y.-F., Su, W.-N. & Hwang, B.-J. Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2Support Enhances the Oxygen Reduction Reaction. ACS Catalysis, 6551-6559, doi:10.1021/acscatal.6b00600 (2016).
63 Subban, C. V., Zhou, Q., Hu, A., Moylan, T. E., Wagner, F. T. & DiSalvo, F. J. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells. J. Am. Chem. Soc. 132, 17531-17536 (2010).
64 Van Thi Thanh Ho, K. C. P., Hung-Lung Chou, Chun-Jern Pan, John Rick, Wei-Nien Su, Bing-Joe Hwang, Jyh-Fu Lee, Hwo-Shuenn Sheu and Wei-Tsung Chuang. Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science 4, 4194, doi:10.1039/c1ee01522b (2011).
65 Yan, H., Wang, X., Yao, M. & Yao, X. Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Progress in Natural Science: Materials International 23, 402-407, doi:10.1016/j.pnsc.2013.06.002 (2013).
66 Samsudin, E. M. & Abd Hamid, S. B. Effect of band gap engineering in anionic-doped TiO 2 photocatalyst. Applied Surface Science 391, 326-336, doi:10.1016/j.apsusc.2016.07.007 (2017).
67 Gong, J., Yang, C., Zhang, J. & Pu, W. Origin of photocatalytic activity of W/N-codoped TiO2: H2 production and DFT calculation with GGA+U. Applied Catalysis B: Environmental 152-153, 73-81, doi:10.1016/j.apcatb.2014.01.028 (2014).
68 Hwang, B. J., Chen, C.-H., Sarma, L. S., Chen, J.-M., Wang, G.-R., Tang, M.-T., Liu, D.-G. & Lee, J.-F. Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt-Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy. J. Phys. Chem. B 110, 6475-6482 (2006).
69 van der Vliet, D., Strmcnik, D. S., Wang, C., Stamenkovic, V. R., Markovic, N. M. & Koper, M. T. M. On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction. Journal of Electroanalytical Chemistry 647, 29-34, doi:10.1016/j.jelechem.2010.05.016 (2010).
70 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6, 15-50, doi:10.1016/0927-0256(96)00008-0 (1996).
71 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169-11186 (1996).
72 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 47, 558-561 (1993).
73 Alexeev, O. S., Chin, S. Y., Engelhard, M. H., Ortiz-Soto, L. & Amiridis, M. D. Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/γ-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2. J. Phys. Chem. B 109, 23430-23443 (2005).
74 Silvestre-Albero, J., Sepu´lveda-Escribano, A., Rodır´guez-Reinoso, F. & Anderson, J. A. Infrared study of CO and 2-butenal co-adsorption on Zn modified Pt/CeO2-SiO2 catalysts. Physical Chemistry Chemical Physics 5, 208-216, doi:10.1039/b209446k (2003).
75 Fernhndez, A., ConzBlez-Elipe, A. R., Caballero, A. & Munuera, G. Low-Temperature Photoassisted Generation of a Strong Metal-Support Interaction in a Rh/TiO2 Catalyst. J. Phys. Chem. 97, 3350-3354 (1993).
76 Banham, D., Feng, F., Pei, K., Ye, S. & Birss, V. Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. Journal of Materials Chemistry A 1, 2812, doi:10.1039/c2ta00868h (2013).
77 Gu, J., Lan, G., Jiang, Y., Xu, Y., Zhu, W., Jin, C. & Zhang, Y. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Research 8, 1480-1496, doi:10.1007/s12274-014-0632-7 (2014).
78 Yun-Chih Lin, H.-L. C., Mon-Che Tsai, Bing-Joe Hwang, Loka Subramanyam Sarma, Yao-Chang Lee, and Ching-Iue Chen. A combined experimental and theoretical investigation of nano-sized effects of Pt catalyst on their underlying methanol electro-oxidation activity. J. Phys. Chem. C 113, 9197-9205 (2009).
79 Genorio, B., Strmcnik, D., Subbaraman, R., Tripkovic, D., Karapetrov, G., Stamenkovic, V. R., Pejovnik, S. & Markovic, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat Mater 9, 998-1003, doi:10.1038/nmat2883 (2010).
80 Cheng, K., Kou, Z., Zhang, J., Jiang, M., Wu, H., Hu, L., Yang, X., Pan, M. & Mu, S. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. J. Mater. Chem. A 3, 14007-14014, doi:10.1039/c5ta02386f (2015).
81 He, D., Cheng, K., Peng, T., Sun, X., Pan, M. & Mu, S. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability. Journal of Materials Chemistry 22, 21298, doi:10.1039/c2jm34290a (2012).
82 He, D., Jiang, Y., Lv, H., Pan, M. & Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental 132-133, 379-388, doi:10.1016/j.apcatb.2012.12.005 (2013).
83 He, D., Zeng, C., Xu, C., Cheng, N., Li, H., Mu, S. & Pan, M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27, 5582-5588, doi:10.1021/la2003589 (2011).
84 Senevirathne, K., Neburchilov, V., Alzate, V., Baker, R., Neagu, R., Zhang, J., Campbell, S. & Ye, S. Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. Journal of Power Sources 220, 1-9, doi:10.1016/j.jpowsour.2012.07.080 (2012).
85 Wang, Y. J., Wilkinson, D. P. & Zhang, J. Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction. Dalton Trans 41, 1187-1194, doi:10.1039/c1dt11711d (2012).
86 Elezović, N. R., Babić, B. M., Gajić-Krstajić, L., Radmilović, V., Krstajić, N. V. & Vračar, L. J. Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction. Journal of Power Sources 195, 3961-3968, doi:10.1016/j.jpowsour.2010.01.035 (2010).
87 Lv, H. & Mu, S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 6, 5063-5074, doi:10.1039/c4nr00402g (2014).
88 Kim, K. W., Kim, S. M., Choi, S., Kim, J. & Lee, I. S. Electroless Pt Deposition on Mn3O4 Nanoparticles via the Galvanic Replacement Process: Electrocatalytic Nanocomposite with Enhanced Performance for Oxygen Reduction Reaction. ACS Nano 6, 5122-5129 (2012).
89 Liu, Y. & Mustain, W. E. High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J Am Chem Soc 135, 530-533, doi:10.1021/ja307635r (2013).
90 Jiang, Z.-Z., Wang, Z.-B., Chu, Y.-Y., Gu, D.-M. & Yin, G.-P. Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ. Sci. 4, 728-735, doi:10.1039/c0ee00475h (2011).
91 Ho, W., Yu, J. C. & Lee, S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun (Camb), 1115-1117, doi:10.1039/b515513d (2006).
92 Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M. & Falciola, L. Electronic Structure of Pure and N-Doped TiO2Nanocrystals by Electrochemical Experiments and First Principles Calculations. The Journal of Physical Chemistry C 115, 6381-6391, doi:10.1021/jp2003968 (2011).
93 Wang, J., Tafen, D. N., Lewis, J. P., Hong, Z., Manivannan, A., Zhi, M., Li, M. & Wu, N. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. J. Am. Chem. Soc. 131, 12290-12297 (2009).
94 Umare, S. S., Charanpahari, A. & Sasikala, R. Enhanced visible light photocatalytic activity of Ga, N and S codoped TiO2 for degradation of azo dye. Materials Chemistry and Physics 140, 529-534, doi:10.1016/j.matchemphys.2013.04.001 (2013).
95 Zhang, M., Wu, J., Lu, D. & Yang, J. Enhanced Visible Light Photocatalytic Activity for TiO2 Nanotube Array Films by Codoping with Tungsten and Nitrogen. International Journal of Photoenergy 2013, 1-8, doi:10.1155/2013/471674 (2013).
96 Díaz-Reyes, J., Dorantes-García, V., Pérez-Benítez, A. & Balderas-López, J. A. Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies y Vacío 21, 12-17 (2008).
97 Yang, X., Dai, W., Guo, C., Chen, H., Cao, Y., Li, H., He, H. & Fan, K. Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Journal of Catalysis 234, 438-450, doi:10.1016/j.jcat.2005.06.035 (2005).
98 Chen, D.-m., Xu, G., Miao, L., Chen, L.-h., Nakao, S. & Jin, P. W-doped anatase TiO2 transparent conductive oxide films: Theory and experiment. Journal of Applied Physics 107, 063707, doi:10.1063/1.3326940 (2010).
99 Li, Y., Wu, W., Dai, P., Zhang, L., Sun, Z., Li, G., Wu, M., Chen, X. & Chen, C. WO3 and Ag nanoparticle co-sensitized TiO2 nanowires: preparation and the enhancement of photocatalytic activity. RSC Advances 4, 23831, doi:10.1039/c4ra02161d (2014).
100 Khan, M., Cao, W., Chen, N., Usman, Z., Khan, D. F., Toufiq, A. M. & Khaskheli, M. A. Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO2. Current Applied Physics 13, 1376-1382, doi:10.1016/j.cap.2013.04.023 (2013).
101 Riboni, F., Bettini, L. G., Bahnemann, D. W. & Selli, E. WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today 209, 28-34, doi:10.1016/j.cattod.2013.01.008 (2013).
102 Sathish, M., Viswanathan, B., Viswanath, R. P. & Gopinath, C. S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 17, 6349-6353 (2005).
103 Chisaka, M., Ishihara, A., Suito, K., Ota, K.-i. & Muramoto, H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochimica Acta 88, 697-707, doi:10.1016/j.electacta.2012.10.137 (2013).
104 Thind, S. S., Wu, G. & Chen, A. Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Applied Catalysis B: Environmental 111-112, 38-45, doi:10.1016/j.apcatb.2011.09.016 (2012).
105 Carmo, M., dos Santos, A. R., Poco, J. G. R. & Linardi, M. Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications. Journal of Power Sources 173, 860-866, doi:10.1016/j.jpowsour.2007.08.032 (2007).
106 Branko N. Popov, D. L. H., David Peterson, Thomas Benjamin. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells. DOE Hydrogen and Fuel Cells Program (2012).
107 Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41, 7892-7895 (1990).
108 Blöchl, P. E. Projector augmented-wave method. Physical Review B 50, 17953-17979 (1994).
109 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics 64, 1045-1097 (1992).
110 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758-1775 (1999).
111 Hu, P., King, D. A., Crampin, S., Lee, M. H. & Payne, M. C. Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}. Chemical Physics Letters 230, 501-506, doi:10.1016/0009-2614(94)01184-2 (1994).
112 Perdew, J. P. in Electronic Structure in Solids '91 (Akademie Verlag:Berlin, 1991).
113 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. & Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 46, 6671-6687 (1992).
114 Bader, R. F. W. Atoms in Molecules: A Quantum Theory. (Oxford, 1990).
115 Huang, K., Sasaki, K., Adzic, R. R. & Xing, Y. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry 22, 16824, doi:10.1039/c2jm32234j (2012).
116 Song, H., Jeong, T. G., Moon, Y. H., Chun, H. H., Chung, K. Y., Kim, H. S., Cho, B. W. & Kim, Y. T. Stabilization of oxygen-deficient structure for conducting Li4Ti5O12-delta by molybdenum doping in a reducing atmosphere. Sci Rep 4, 4350, doi:10.1038/srep04350 (2014).
117 Kim, J.-H., Kwon, G., Lim, H., Zhu, C., You, H. & Kim, Y.-T. Effects of transition metal doping in Pt/M-TiO 2 (M= V, Cr, and Nb) on oxygen reduction reaction activity. Journal of Power Sources 320, 188-195 (2016).
118 Mayrhofer, K. J. J., Strmcnik, D., Blizanac, B. B., Stamenkovic, V., Arenz, M. & Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta 53, 3181-3188, doi:http://doi.org/10.1016/j.electacta.2007.11.057 (2008).
119 Hodnik, N., Baldizzone, C., Cherevko, S., Zeradjanin, A. & Mayrhofer, K. J. The effect of the voltage scan rate on the determination of the oxygen reduction activity of Pt/C fuel cell catalyst. Electrocatalysis 6, 1-5 (2015).
120 Omura, J., Yano, H., Tryk, D., Watanabe, M. & Uchida, H. Electrochemical Quartz Crystal Microbalance Analysis of the Oxygen Reduction Reaction on Pt-Based Electrodes. Part 2: Adsorption of Oxygen Species and ClO4–Anions on Pt and Pt–Co Alloy in HClO4 Solutions. Langmuir 30, 432-439 (2014).
121 Kobayashi, S., Wakisaka, M., Tryk, D. A., Iiyama, A. & Uchida, H. in Meeting Abstracts. 2638-2638 (The Electrochemical Society).
122 Darzi, S. J., Mahjoub, A. & Sarfi, S. Visible-light-active nitrogen doped TiO2 nanoparticles prepared by sol–gel acid catalyzed reaction. Iran. J. Mater. Sci. Eng 9, 17-23 (2012).
123 Couselo, N., García Einschlag, F. S., Candal, R. J. & Jobbágy, M. Tungsten-doped TiO2 vs pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism. The Journal of Physical Chemistry C 112, 1094-1100 (2008).
124 Neville, E. M., Mattle, M. J., Loughrey, D., Rajesh, B., Rahman, M., MacElroy, J., Sullivan, J. A. & Thampi, R. Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol-gel processes in the presence of melamine borate: Reflections through photocatalysis. (2012).
125 Le, T. S., Ngo, Q. B., Nguyen, V. D., Nguyen, H. C., Dao, T. H., Tran, X. T., Kabachkov, E. & Balikhin, I. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting. Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 015017 (2014).
126 Macías-Sánchez, J., Hinojosa-Reyes, L., Caballero-Quintero, A., De La Cruz, W., Ruiz-Ruiz, E., Hernández-Ramírez, A. & Guzmán-Mar, J. Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2, 4-D and picloram herbicides. Photochemical & Photobiological Sciences 14, 536-542 (2015).

QR CODE