簡易檢索 / 詳目顯示

研究生: Warga Chegeno Meraje
Warga Chegeno Meraje
論文名稱: 混合太陽能光電熱系統的全光譜動態建模與實務驗證
Dynamic Modeling and Experimental Verification of a Full-Spectrum Utilizing Hybrid Photovoltaic Thermal System
指導教授: 黃昌群
Chang-Chiun Huang
郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
郭中豐
Chung-Feng Jeffrey Kuo
邱智瑋
Chih-Wei Chiu
陳貽評
Chen Yiping
張嘉德
Chia-Der Chang
蘇德利
Te-Li Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 136
中文關鍵詞: 集中光伏熱PV/T建模奈米流體等離子體混合奈米流體光譜分裂系統效率
外文關鍵詞: Concentrated photovoltaic thermal, PV/T, modeling, nanofluid, plasmonic hybrid nanofluids spectral splitting, system efficiency
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 採用聚光器和光譜分裂的混合光伏/熱 (PV/T) 系統已成為很有前景的太陽能收集技術。傳統PV/T 系統顯著改善了電能和熱能,但是輸出溫度侷限於光伏電池的工作溫度。使用光學聚光器將太陽輻射從大面積集中到較小的太陽能接收面積的技術,允許更多的入射輻射,因此每單位轉換收集器裝置的輸出功率更大。太陽光在PV電池中的集中以及利用較廉價的聚光鏡或透鏡替換昂貴的光伏面積,降低太陽能發電成本以及最大限度地減少光聚焦過程中的光學損失,並為光譜分裂製備合適的奈米流體對於聚光光伏熱 (CPV/T) 系統的性能至關重要。本研究設計並驗證基於菲涅耳透鏡的太陽能聚光器與奈米流體光譜分裂光伏熱系統。該設計假設太陽輻射通過線性菲涅耳透鏡適當地集中在一系列管子上,奈米流體流過這些管子,允將過濾後的大光束傳輸到下面的 PV,而其餘部分輻射光被材料吸收轉化成熱能。通過增加材料表面積和減小光程長度可以使光損失最小化,通過實驗測量合成的奈米流體的光譜透射率。
    動態建模能量平衡方程是通過 MATLAB 編程開發和計算的。由於光伏組件與過濾通道分離並與水冷卻集成在一起,因此其表面溫度遠低於奈米流體和輸出水溫度。對於體積濃度比為0.00036%、0.00089%、0.0017%、0.0036% 和 0.0089% 的 ZnO 奈米流體,系統的最大組合效率分別為 50.35%、65.2%、72.70%、74.7% 和85%。濃度比為0.00089 vol % 的奈米流體,提供與矽晶太陽能電池最接近的光譜匹配,並通過合理的電和熱效率驗證。本研究使用它作為ZnO奈米粒子的代表性濃度比來驗證原型。模擬和實驗確定了整體性能之間的最大偏差小於3.7%,顯示非常吻合,突顯了在聚光光伏熱系統中使用低成本ZnO奈米流體以實現全光譜利用的潛力。
    創新光譜分裂奈米流體的合成是全光譜利用的另一項實際研究,可以在太陽輻射較高的地區提高混合PV/T系統的性能。因此,開發了一種最適合在溫帶地區有效的高性能矽基 PV/T 系統的等離子體混合光譜分裂奈米流體,並進行了實驗驗證。合成了Ag-SiO_2 內核-外殼形式之奈米板/ EG-CoSO_4等離子體混合奈米流體 (plasmonic hybrid nanoflui(d),用於選擇性吸收自然太陽光光譜。本研究使用 H_2 O_2 作為基本的形狀選擇氧化劑,通過一步法合成銀奈米板,簡化了種子形成和球形奈米粒子向不同尺寸奈米板的轉化。在晴天於戶外進行了等離子體混合奈米流體光學過濾 PV/T 系統的實際研究,以代表溫帶地區並評估動態建模系統在實際情況的適用性,顯示等離子體分束器(plasmonic beam splitter)可有效的傳熱介質並將光伏模組保持在環境溫度附近。對於濃度分別為 18.3 和 28.3 ppm 的EG-CoSO_4基液和奈米流體,在實驗的每日記錄中最高溫度分別為 51.62ᵒC、54.34ᵒC 和 57.56ᵒC,而 PV 面板的最高溫度為 33.16 ᵒC。本研究分別使用 27.3 ppm、18.3 ppm 濃度比和混合基液的光譜過濾等離子體混合奈米流體 PV/T 系統獲得了高達87.6%、86.4% 和 85.3%的最高整體性能。本研究顯示,奈米流體降低了電力輸出,但產生了比獨立PV更高的評價函數值,顯示所提出的奈米流體是 PV/T 系統的潛在候選者,目標是利用全光譜陽光並提高整體性能。


    A hybrid photovoltaic/thermal (PV/T) system adopting the optical concentrator and spectral splitting has become a promising technology for harvesting solar energy. The conventional PV/T system generates significantly improved electrical power and thermal energy, with the output temperature limited to the operating temperature of PV cells. Concentrating the solar irradiation from a large area to a smaller receiving area of solar energy technologies, using optical concentrators, allows for more incident irradiation and, therefore, more output power per unit converting collector device. The concentration of sunlight in photovoltaic cells and the consequent replacement of expensive photovoltaics with cheap concentrating mirrors or lenses can reduce solar electricity costs. Minimizing optical losses during light focusing and preparing an appropriate nanofluid for spectral splitting is crucial for the performance of a concentrated photovoltaic thermal (CPV/T) system. A Fresnel lens-based solar concentrator integrated with a nanofluid spectral splitting photovoltaic thermal system was designed and validated in this study. The design posited solar irradiation being appropriately concentrated by a linear Fresnel lens on a series of tubes through which the nanofluid flowed, allowing a large beam of filtered spectra to be transmitted to the PV, with the rest absorbed and converted to thermal energy is introduced. The optical loss was minimized by increasing the surface area and decreasing the optical path length. The synthesized nanofluid's spectral transmittance was measured experimentally.
    Dynamic modeling energy balance equation was developed and computed by MATLAB programming. Since the photovoltaic module was decoupled from the filtering channel and integrated with the water cooling, its surface temperature was much lower than the nanofluid and output water temperature. The maximum combined efficiency of the system was 50.35%, 65.2%, 72.70%, 74.7%, and 85% for ZnO nanofluids with volume concentration ratios of 0.00036%, 0.00089%, 0.0017%, 0.0036%, and 0.0089%, respectively. A nanofluid with a concentration ratio of 0.00089 vol. % provides the closest spectral match with a silicon solar cell, as verified by a reasonable electrical and thermal efficiency. We used this as a representative concentration ratio of ZnO nanoparticles to validate the proposed model system. The maximum deviation between simulated and experimentally determined overall performance was less than 3.7% which shows the two results are in good agreement. The findings highlight the potentials of employing a low-cost ZnO nanofluid in a concentrated photovoltaic thermal system for full spectrum utilization.
    The synthesis of novel spectral splitting nanofluid is another considerable study on full-spectrum utilization for improving the performance of hybrid PV/T systems in areas with higher solar irradiation. Thus, a plasmonic hybrid spectral splitting nanofluid best suited for high-performance silicon-based PV/T systems effective in temperate regions was developed and validated experimentally. The Ag@SiO2 core-shell nanoplate/EG-CoSO4 plasmonic hybrid nanofluid was synthesized for selective absorption of the natural sunlight spectrum. We used H2O2 as a basic shape-selective oxidant to synthesize silver nanoplate using a one-step method. This approach simplifies seed formation and transformation of spherical nanoparticles to different-sized nanoplates. A practical study of plasmonic hybrid nanofluid optical filtering PV/T system was conducted outdoors on sunny days to represent the temperate region and evaluate the dynamic modeling and the system's applicability in real situations. It was found that the plasmonic beam splitter serves as an efficient heat transfer medium and maintains the PV module around the ambient temperature. The highest temperature recorded on the typical day of our experiment was 51.62 ᵒC, 54.34 ᵒC, and 57.56 ᵒC for the EG-CoSO4 base fluid and nanofluids with concentrations of 18.3 and 28.3 ppm, respectively, and 33.16 ᵒC for the PV panel. The highest overall performance of up to 87.6%, 86.4%, and 85.3% was attained by the spectral filtering plasmonic hybrid nanofluid PV/T system using 27.3 ppm, 18.3 ppm concentration ratio, and hybrid base fluid, respectively. The study shows the nanofluid reduces the electricity output but produces higher merit function values than the PV standalone. This shows that the proposed nanofluid is a potential candidate for PV/T systems targeting utilization of full-spectrum sunlight and enhancing the overall performance.

    Table of contents Page 摘要 I Abstract II Acknowledgment IV List of symbol and abbreviation V List of figures X List of tables XIII CHAPTER 1 ......................................................................................................... 1 Introduction 1 1.1. Background of the study 1 1.2. Motivation and goals 6 1.3. Thesis organization 7 CHAPTER 2 ……………………………………………………………………………………. 8 Literature review 8 2.1. Hybrid photovoltaic thermal system 9 2.2. Concentrated photovoltaic thermal System 18 2.3. Spectral splitting CPV/T system 21 2.4. Nanofluid spectral splitting CPV/T system 23 CHAPTER 3 …………………………………………………………………………………… 32 Design and experimental validation of concentrated photovoltaic thermal system integrated with nanofluid spectral splitter 32 3.1. Introduction 32 3.2. Materials and methods 35 3.2.1. Model description 35 3.2.2. Nanofluid preparation 36 3.3. Mathematical modeling 36 3.3.1. Energy balance equations of the dynamic modeling 40 3.3.2. Computation procedure 49 3.4. Experimental setup 52 3.5. Results and discussion 54 3.5.1. Analysis of the energy collection 54 3.5.2. Temperature profile 60 3.5.3. Power output 62 3.5.4. Energy conversion performance 63 3.5.5. Model validation 66 3.5.6. Error analysis of the experimental result 68 3.5.7. Economic analysis 69 3.6. Conclusion 69 CHAPTER 4 …………………………………………………………………………………… 72 Performance enhancement study of Ag@SiO2 core-shell nanoplate plasmonic hybrid spectral splitting nanofluid based photovoltaic thermal system in a temperate region 72 4. 1. Introduction 72 4.2. Materials and methodology 74 4.2.1. System description 74 4.2.2. Plasmonic hybrid nanofluid preparation 75 4.2.3. Stability of the hybrid nanofluid 77 4.3. Mathematical modeling 77 4.3.1. Optical and electrical models 78 4.3.2. Energy equations of the model system 80 4.4. PV/T system experimental evaluation 84 4.4.1. Experimental setup 84 4.4.2. PV/T system performance evaluation 86 4.4.3. Uncertainty evaluation 87 4.5. Results and discussion 87 4.5.1. Environmental results 87 4.5.2. Plasmonic hybrid nanofluid 88 4.5.3. Photoelectric conversion result 92 4.5.4. Photothermal conversion result 96 4.5.5. The merit functions 98 4.6. Comparison of the study with literatures 98 4.7. Conclusion 100 CHAPTER 6 ………………………………………………………………………………….. 101 Summary and future work 101 6.1. Summary 101 6.2. Future work 103 Reference 104 Lists of publications 120  

    [1] A.H. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renew Sustainable Energy Reviews. 77 (2017) 109-30.
    [2] F. Kreith, D. Goswami. Handbook of Energy Efficiency and Renewable Energy. Crc Press, New York, 2007.
    [3] International Energy Agency, 2022, URL: https://www.iea.org.
    [4] Future Energy model, 2022, URL: https://energy-agency-fukushima.com/en/vision/society.
    [5] S.R. Sinsel, R.L. Riemke, V.H. Hoffmann. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy. 145 (2020) 2271-85.
    [6] P.A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou. Sustainable development using renewable energy technology. Elsevier (2020) 2430-7.
    [7] M. Shahbaz, C. Raghutla, K.R. Chittedi, Z. Jiao, X.V. Vo. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy. 207 (2020) 118162.
    [8] J.W. Burnett, F. Hefner. Solar energy adoption: A case study of South Carolina. The Electricity Journal. 34 (2021) 106958.
    [9] Taipower, Taiwan, 2022, URL: https://www.taipower.com.tw.
    [10] Clean Energy Reviews, 2022, URL: https://www.cleanenergyreviews.
    [11] D.A. Krawczyk, M. Żukowski, A. Rodero. Efficiency of a solar collector system for the public building depending on its location. Environmental Science and Pollution Research. 27 (2020) 101-10.
    [12] M. Ghazy, E. Ibrahim, A. Mohamed, A.A. Askalany. Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art. International Journal of Energy and Environmental Engineering. (2022) 1-31.
    [13] E. Arslan, M. Aktaş, Ö.F. Can. Experimental and numerical investigation of a novel photovoltaic thermal (PV/T) collector with the energy and exergy analysis. Journal of Cleaner Production. 276 (2020) 123255.
    [14] V. Tyagi, S. Kaushik, S. Tyagi. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews. 16 (2012) 1383-98.
    [15] A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management. 142 (2017) 547-58.
    [16] S. Nižetić, M. Jurčević, D. Čoko, M. Arıcı, A.T. Hoang. Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches. Energy. 228 (2021) 120546.
    [17] T.T. Chow. A review on photovoltaic/thermal hybrid solar technology. Applied Energy. 87 (2010) 365-79.
    [18] A. Riahi, A. Ben Haj Ali, A. Fadhel, A. Guizani, M. Balghouthi. Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators. Energy Conversion and Management. 205 (2020) 112377.
    [19] M. Balghouthi, S.E. Trabelsi, M.B. Amara, A.B.H. Ali, A. Guizani. Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe. Renewable and Sustainable Energy Reviews. 56 (2016) 1227-48.
    [20] S. Hassani, R. Saidur, S. Mekhilef, R.A. Taylor. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Conversion and Management. 123 (2016) 431-44.
    [21] G. Huang, S.R. Curt, K. Wang, C.N. Markides. Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: A review. Nano Materials Science. 2 (2020) 183-203.
    [22] N. Abbas, M.B. Awan, M. Amer, S.M. Ammar, U. Sajjad, H.M. Ali, et al. Applications of nanofluids in photovoltaic thermal systems: A review of recent advances. Physica A: Statistical Mechanics and its Applications. 536 (2019) 122513.
    [23] F. Karimi, H. Xu, Z. Wang, J. Chen, M. Yang. Experimental study of a concentrated PV/T system using linear Fresnel lens. Energy. 123 (2017) 402-12.
    [24] F. Yazdanifard, M. Ameri, R.A. Taylor. Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Conversion and Management. 215 (2020) 112927.
    [25] L. Huaxu, W. Fuqiang, Z. Dong, C. Ziming, Z. Chuanxin, L. Bo, X. Huijin. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy. 194 (2020) 116913.
    [26] Y. Jia, F. Ran, C. Zhu, G. Fang. Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy. 196 (2020) 625-36.
    [27] D. Das, P. Kalita, O. Roy. Flat plate hybrid photovoltaic-thermal (PV/T) system: A review on design and development. Renewable and Sustainable Energy Reviews. 84 (2018) 111-30.
    [28] H. Liang, H. Han, F. Wang, Z. Cheng, B. Lin, Y. Pan, et al. Experimental investigation on spectral splitting of photovoltaic/thermal hybrid system with two-axis sun tracking based on SiO2/TiO2 interference thin film. Energy Conversion and Management. 188 (2019) 230-40.
    [29] Y. Ling, W. Li, J. Jin, Y. Yu, Y. Hao, H. Jin. A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation. Applied Energy. 260 (2020) 113631.
    [30] W. Qu, H. Hong, H. Jin. A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Applied Energy. 248 (2019) 162-73.
    [31] W. An, J. Zhang, T. Zhu, N. Gao. Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test. Renewable Energy. 86 (2016) 633-42.
    [32] Q. Zhu, Y. Cui, L. Mu, L. Tang. Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation. International Journal of Thermophysics. 34 (2012) 2307-21.
    [33] X. Han, X. Chen, Y. Sun, J. Qu. Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter. Energy. 192 (2020) 116611.
    [34] N. Goel, R.A. Taylor, T. Otanicar. A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renewable Energy. 145 (2020) 903-13.
    [35] I. Wole‐Osho, H. Adun, M. Adedeji, E.C. Okonkwo, D. Kavaz, M. Dagbasi. Effect of hybrid nanofluids mixture ratio on the performance of a photovoltaic thermal collector. International Journal of Energy Research. 44 (2020) 9064-81.
    [36] N. Aste, C. Del Pero, F. Leonforte. Water flat plate PV–thermal collectors: a review. Solar Energy. 102 (2014) 98-115.
    [37] Y. Jia, G. Alva, G. Fang. Development and applications of photovoltaic–thermal systems: A review. Renewable and Sustainable Energy Reviews. 102 (2019) 249-65.
    [38] F. Yazdanifard, M. Ameri. Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renewable and Sustainable Energy Reviews. 97 (2018) 529-53.
    [39] Y. Chaibi, T. El Rhafiki, R. Simón-Allué, I. Guedea, S.C. Luaces, O.C. Gajate, T. Kousksou, Y.Zeraouli. Air-based hybrid photovoltaic/thermal systems: A review. Journal of Cleaner Production. 295 (2021) 126211.
    [40] J.C. Mojumder, W.T. Chong, H.C. Ong, K. Leong. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy and Buildings. 130 (2016) 272-85.
    [41] M.E.A. Slimani, M. Amirat, I. Kurucz, S. Bahria, A. Hamidat, W.B. Chaouch. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Conversion and Management. 133 (2017) 458-76.
    [42] A. Gupta, A. Biswas, B. Das, B.V. Reddy. Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Solar Energy. 231 (2022) 1072-91.
    [43] B. Lamrani, A. Draoui, F. Kuznik. Thermal performance and environmental assessment of a hybrid solar-electrical wood dryer integrated with Photovoltaic/Thermal air collector and heat recovery system. Solar Energy. 221 (2021) 60-74.
    [44] F. Hussain, M. Othman, K. Sopian, B. Yatim, H. Ruslan, H. Othman. Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector. Renewable and Sustainable Energy Reviews. 25 (2013) 431-41.
    [45] M.R. Gomaa, M. Ahmed, H. Rezk. Temperature distribution modeling of PV and cooling water PV/T collectors through thin and thick cooling cross-fined channel box. Energy Reports. 8 (2022) 1144-53.
    [46] A. Sahu, N. Yadav, K. Sudhakar. Floating photovoltaic power plant: A review. Renewable and sustainable energy reviews. 66 (2016) 815-24.
    [47] A. Kandeal, A.K. Thakur, M. Elkadeem, M.F. Elmorshedy, Z. Ullah, R. Sathyamurthy, et al. Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. Journal of Cleaner Production. 273 (2020) 122772.
    [48] M.Y. Othman, S. Hamid, M. Tabook, K. Sopian, M. Roslan, Z. Ibarahim. Performance analysis of PV/T Combi with water and air heating system: An experimental study. Renewable Energy. 86 (2016) 716-22.
    [49] S. Kianifard, M. Zamen, A.A. Nejad. Modeling, designing and fabrication of a novel PV/T cooling system using half pipe. Journal of Cleaner Production. 253 (2020) 119972.
    [50] A. Farzanehnia, M. Sardar Abadi. Exergy and Its Application-Toward Green Energy Production and Sustainable Environment. Intech Open, London, 2019.
    [51] W. He, T.-T. Chow, J. Ji, J. Lu, G. Pei, L.-s. Chan. Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Applied Energy. 83 (2006) 199-210.
    [52] W. Pang, Y. Cui, Q. Zhang, H. Yu, L. Zhang, H. Yan. Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Solar Energy. 188 (2019) 1360-8.
    [53] S. Dubey, A.A. Tay. Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy for Sustainable Development. 17 (2013) 1-12.
    [54] S.K. Gupta, S. Pradhan. A review of recent advances and the role of nanofluid in solar photovoltaic thermal (PV/T) system. Materials Today: Proceedings. 44 (2021) 782-91.
    [55] A. Shahsavar, M. Eisapour, P. Talebizadehsardari. Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy. 208 (2020) 118409.
    [56] S.R. Abdallah, H. Saidani-Scott, O.E. Abdellatif. Performance analysis for hybrid PV/T system using low concentration MWCNT (water-base(d) nanofluid. Solar Energy. 181 (2019) 108-15.
    [57] F. Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S.M. Yahya, L. Das. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Solar Energy. 208 (2020) 124-38.
    [58] M. Zamen, M. Kahani, B. Rostami, M. Bargahi. Application of Al2O3/water nanofluid as the coolant in a new design of photovoltaic/thermal system: An experimental study. Energy Science & Engineering. (2022).
    [59] H.A. Kazem, M.T. Chaichan, A.H. Al-Waeli. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: an experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 44 (2022) 3673-91.
    [60] H.M. Maghrabie, K. Elsaid, E.T. Sayed, A. Radwan, A.G. Abo-Khalil, H. Rezk, et al. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. Journal of Energy Storage. 48 (2022) 103937.
    [61] K.Y. Leong, M.R.A. Rahman, B.A. Gurunathan. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage. 21 (2019) 18-31.
    [62] A. Mourad, A. Aissa, Z. Said, O. Younis, M. Iqbal, A. Alazzam. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. Journal of Energy Storage. 49 (2022) 104186.
    [63] A. Naseer, F. Jamil, H.M. Ali, A. Ejaz, S. Khushnood, T. Ambreen, et al. Role of phase change materials thickness for photovoltaic thermal management. Sustainable Energy Technologies and Assessments. 49 (2022) 101719.
    [64] T.-P. Teng, C.-C. Yu. Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale research letters. 7 (2012) 1-10.
    [65] H. Nasef, H. Hassan, S. Mori, S. Nada. Experimental investigation on the performance of parallel and staggered arrays of PCM energy storage system for PV thermal regulation. Energy Conversion and Management. 254 (2022) 115143.
    [66] M. Sharaf, M.S. Yousef, A.S. Huzayyin. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research. (2022) 1-29.
    [67] M.M. Awad, O.K. Ahmed, O.M. Ali, N.T. Alwan, S.J. Yaqoob, A. Nayyar, et al. Photovoltaic Thermal Collectors Integrated with Phase Change Materials: A Comprehensive Analysis. Electronics. 11 (2022) 337.
    [68] W.J. Cameron, K.S. Reddy, T.K. Mallick. Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration. Renewable and Sustainable Energy Reviews. 163 (2022) 112512.
    [69] O.Z. Sharaf, M.F. Orhan. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies. Renewable and Sustainable Energy Reviews. 50 (2015) 1500-65.
    [70] I. Karathanassis, E. Papanicolaou, V. Belessiotis, G. Bergeles. Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling. Renewable Energy. 101 (2017) 467-83.
    [71] S. Shoeibi, H. Kargarsharifabad, S.A.A. Mirjalily, M. Zargarazad. Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Applied Energy. 304 (2021) 117778.
    [72] D. Chemisana, M. Ibáñez, J. Rosell. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator. Energy conversion and management. 52 (2011) 3234-40.
    [73] A. Parthiban, T. Mallick, K. Reddy. Integrated optical-thermal-electrical modeling of compound parabolic concentrator based photovoltaic-thermal system. Energy Conversion and Management. 251 (2022) 115009.
    [74] R. Künnemeyer, T. Anderson, M. Duke, J. Carson. Performance of a V-trough photovoltaic/thermal concentrator. Solar energy. 101 (2014) 19-27.
    [75] C. Kong, Z. Xu, Q. Yao. Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells. Applied energy. 112 (2013) 618-25.
    [76] Y. Liu, S. Dong, Y. Liu, Z. Zhang, J. Wang, G. Wang. Experimental investigation on optimal nanofluid-based PV/T system. Journal of Photonics for Energy. 9 (2019) 027501.
    [77] L. Huaxu, W. Fuqiang, C. Ziming, S. Yong, L. Bo, P. Yuzhai. Performance study on optical splitting film-based spectral splitting concentrated photovoltaic/thermal applications under concentrated solar irradiation. Solar Energy. 206 (2020) 84-91.
    [78] Y.-P. Zhou, M.-J. Li, Y.-H. Hu, T. Ma. Design and experimental investigation of a novel full solar spectrum utilization system. Applied Energy. 260 (2020) 114258.
    [79] W. An, J. Wu, T. Zhu, Q. Zhu. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Applied Energy. 184 (2016) 197-206.
    [80] F. Crisostomo, N. Hjerrild, S. Mesgari, Q. Li, R.A. Taylor. A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energy. 193 (2017) 1-14.
    [81] X. Ju, C. Xu, X. Han, X. Du, G. Wei, Y. Yang. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Applied Energy. 187 (2017) 534-63.
    [82] T. Ambreen, M.-H. Kim. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Applied Energy. 264 (2020) 114684.
    [83] H. Kimpton, D.A. Cristaldi, E. Stulz, X. Zhang. Thermal performance and physicochemical stability of silver nanoprism-based nanofluids for direct solar absorption. Solar Energy. 199 (2020) 366-76.
    [84] N.E. Hjerrild, J.A. Scott, R. Amal, R.A. Taylor. Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications. Renewable Energy. 120 (2018) 266-74.
    [85] X. Zhao, X. Han, Y. Yao, J. Huang. Stability investigation of propylene glycol-based Ag@ SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems. Energy. 238 (2022) 122040.
    [86] J. Walshe, G. Amarandei, H. Ahmed, S. McCormack, J. Doran. Development of poly-vinyl alcohol stabilized silver nanofluids for solar thermal applications. Solar Energy Materials and Solar Cells. 201 (2019) 110085.
    [87] H. Li, Y. He, C. Wang, X. Wang, Y. Hu. Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications. Applied Energy. 236 (2019) 117-26.
    [88] S. Ahmad, R. Saidur, I. Mahbubul, F. Al-Sulaiman. Optical properties of various nanofluids used in solar collector: a review. Renewable and Sustainable Energy Reviews. 73 (2017) 1014-30.
    [89] J. Huang, X. Han, X. Zhao, C. Meng. Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems. Energy. 215 (2021).
    [90] X. Han, X. Chen, Q. Wang, S.M. Alelyani, J. Qu. Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Solar Energy. 177 (2019) 387-94.
    [91] T.B. Gorji, A.A. Ranjbar. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DAS(C) using graphite, magnetite and silver nanofluids. Solar Energy. 135 (2016) 493-505.
    [92] H. Liang, F. Wang, L. Yang, Z. Cheng, Y. Shuai, H. Tan. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renewable and Sustainable Energy Reviews. 141 (2021).
    [93] H. Kimpton, E. Stulz, X. Zhang. Silver nanofluids based broadband solar absorber through tuning nanosilver geometries. Solar Energy. 208 (2020) 515-26.
    [94] M.M. Tawfik. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews. 75 (2017) 1239-53.
    [95] M.U. Sajid, Y. Bicer. Nanofluids as solar spectrum splitters: A critical review. Solar Energy. 207 (2020) 974-1001.
    [96] M. Hemmat Esfe, M.H. Kamyab, M. Valadkhani. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Solar Energy. 199 (2020) 796-818.
    [97] S. Chakraborty, P.K. Panigrahi. Stability of nanofluid: A review. Applied Thermal Engineering. 174 (2020) 115259.
    [98] W. Chamsa-Ard, S. Brundavanam, C.C. Fung, D. Fawcett, G. Poinern. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials. 7 (2017) 131.
    [99] Y. Cui, J. Zhu, S. Zoras, J. Zhang. Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid. Renewable and Sustainable Energy Reviews. 135 (2021).
    [100] S.A. Adam, X. Ju, Z. Zhang, M.M. Abd El-Samie, C. Xu. Theoretical investigation of different CPVT configurations based on liquid absorption spectral beam filter. Energy. 189 (2019) 116259.
    [101] L. Huaxu, W. Fuqiang, L. Dong, Z. Jie, T. Jianyu. Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems. International Journal of Heat and Mass Transfer. 128 (2019) 668-78.
    [102] Y. He, Y. Hu, H. Li. An Ag@TiO2/ethylene glycol/water solution as a nanofluid-based beam splitter for photovoltaic/thermal applications in cold regions. Energy Conversion and Management. 198 (2019).
    [103] X. Han, D. Xue, J. Zheng, S.M. Alelyani, X. Chen. Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells. Renewable Energy. 131 (2019) 938-45.
    [104] A. Riahi, A.B.H. Ali, A. Fadhel, A. Guizani, M. Balghouthi. Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators. Energy Conversion and Management. 205 (2020) 112377.
    [105] S. Li, Z. Chen, X. Liu, X. Zhang, Y. Zhou, W. Gu, et al. Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module. Applied Energy. 283 (2021) 116287.
    [106] A. Jäger-Waldau. Snapshot of Photovoltaics—February 2020. Energies. 13 (2020).
    [107] M. Fterich, H. Chouikhi, S. Sandoval-Torres, H. Bentaher, A. Elloumi, A. Maalej. Numerical simulation and experimental characterization of the heat transfer in a PV/T air collector prototype. Case Studies in Thermal Engineering. 27 (2021) 101209.
    [108] Y. Cui, J. Zhu, S. Zoras, J. Zhang. Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid. Renewable and Sustainable Energy Reviews. 135 (2021) 110254.
    [109] M. Sangeetha, S. Manigandan, B. Ashok, K. Brindhadevi, A. Pugazhendhi. Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production. Fuel. 286 (2021) 119422.
    [110] Y. Xuan, Q. Li. Investigation on convective heat transfer and flow features of nanofluids. J Heat transfer. 125 (2003) 151-5.
    [111] H. Xu, N. Wang, C. Zhang, Z. Qu, F. Karimi. Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Conversion and Management. 229 (2021) 113660.
    [112] D. Su, Y. Jia, G. Alva, L. Liu, G. Fang. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management. 131 (2017) 79-89.
    [113] Z. Xu, C. Kleinstreuer. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Conversion and Management. 87 (2014) 504-12.
    [114] C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, K. Cen. Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems. Applied Energy. 92 (2012) 298-306.
    [115] F. Yazdanifard, E. Ebrahimnia-Bajestan, M. Ameri. Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids. Energy Conversion and Management. 148 (2017) 1265-77.
    [116] A. Peinado Gonzalo, A. Pliego Marugán, F.P. García Márquez. A review of the application performances of concentrated solar power systems. Applied Energy. 255 (2019) 113893.
    [117] Y.-L. He, K. Wang, Y. Qiu, B.-C. Du, Q. Liang, S. Du. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Applied Thermal Engineering. 149 (2019) 448-74.
    [118] M. Rodrigues Fernandes, L.A. Schaefer. Long-term environmental impacts of a small-scale spectral filtering concentrated photovoltaic-thermal system. Energy Conversion and Management. 184 (2019) 350-61.
    [119] X. Han, Y. Lv. Design and dynamic performance of a concentrated photovoltaic system with vapor chambers cooling. Applied Thermal Engineering. 201 (2022) 117824.
    [120] J.-h. Gong, J. Wang, P.D. Lund. Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator. Energy. 228 (2021) 120614.
    [121] S. Kumar, N. Chander, V.K. Gupta, R. Kukreja. Progress, challenges and future prospects of plasmonic nanofluid based direct absorption solar collectors–A state-of-the-art review. Solar Energy. 227 (2021) 365-425.
    [122] S. Kiyaee, Y. Saboohi, A.Z. Moshfegh. A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells. Energy Conversion and Management. 230 (2021) 113782.
    [123] N. Khorrami, M.R. Zargarabadi, M. Dehghan. A novel spectrally selective radiation shield for cooling a photovoltaic module. Sustainable Energy Technologies and Assessments. 46 (2021) 101269.
    [124] X. Han, L. Tu, Y. Sun. A spectrally splitting concentrating PV/T system using combined absorption optical filter and linear Fresnel reflector concentrator. Solar Energy. 223 (2021) 168-81.
    [125] A. Lekbir, S. Hassani, S. Mekhilef, R. Saidur, M.R. Ab Ghani, C.K. Gan. Energy performance investigation of nanofluid‐based concentrated photovoltaic/thermal‐thermoelectric generator hybrid system. International Journal of Energy Research. 45 (2021) 9039-57.
    [126] L. Huaxu, W. Fuqiang, Z. Dong, C. Ziming, Z. Chuanxin, L. Bo, X. Huijin. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy. 194 (2020) 116913.
    [127] T. Ambreen, M.-H. Kim. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Applied Energy. 264 (2020).
    [128] A. Sohani, M.H. Shahverdian, H. Sayyaadi, S. Samiezadeh, M.H. Doranehgard, S. Nizetic, N. Karimi. Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria. Journal of the Taiwan Institute of Chemical Engineers. (2021).
    [129] X. Ma, R. Jin, S. Liang, S. Liu, H. Zheng. Analysis on an optimal transmittance of Fresnel lens as solar concentrator. Solar Energy. 207 (2020) 22-31.
    [130] H. Li, J. Huang, H. Wang, M. Song. Effects of receiver parameters on the optical efficiency of a fixed linear-focus Fresnel lens solar system with sliding adjustment. Energy Reports. 7 (2021) 3348-61.
    [131] Y.-W. Lee, C.-F.J. Kuo, W.-H. Weng, C.-Y. Huang, C.-Y. Peng. Dynamic modeling and entity validation of a photovoltaic system. Applied Energy. 200 (2017) 370-82.
    [132] X. Ju, M.M. Abd El-Samie, C. Xu, H. Yu, X. Pan, Y. Yang. A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter. Applied Energy. 264 (2020) 114701.
    [133] L. Xiao, L.-N. Gan, S.-Y. Wu, Z.-L. Chen. Temperature uniformity and performance of PV/T system featured by a nanofluid-based spectrum-splitting top channel and an S-shaped bottom channel. Renewable Energy. 167 (2021) 929-941.
    [134] X. Ju, Z. Wang, G. Flamant, P. Li, W. Zhao. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Solar Energy. 86 (2012) 1941-54.
    [135] J. Ni, J. Li, W. An, T. Zhu. Performance analysis of nanofluid-based spectral splitting PV/T system in combined heating and power application. Applied Thermal Engineering. 129 (2018) 1160-70.
    [136] W. An, J. Li, J. Ni, R.A. Taylor, T. Zhu. Analysis of a temperature dependent optical window for nanofluid-based spectral splitting in PV/T power generation applications. Energy Conversion and Management. 151 (2017) 23-31.
    [137] W. Li, M.M. Abd El-Samie, S. Zhao, J. Lin, X. Ju, C. Xu. Division methods and selection principles for the ideal optical window of spectral beam splitting photovoltaic/thermal systems. Energy Conversion and Management. 247 (2021) 114736.
    [138] T. Salameh, M. Tawalbeh, A. Juaidi, R. Abdallah, A.-K. Hamid. A novel three-dimensional numerical model for PV/T water system in hot climate region. Renewable Energy. 164 (2021) 1320-33.
    [139] D. Das, U. Bordoloi, A.D. Kamble, H.H. Muigai, R.K. Pai, P. Kalita. Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material. Applied Thermal Engineering. 182 (2021) 116035.
    [140] X. Han, X. Zhao, X. Chen. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renewable Energy. 162 (2020) 55-70.
    [141] C.-F. Jeffrey Kuo, Y.-W. Lee, M. Lazuardi Umar, P.-C. Yang. Dynamic modeling, practical verification and energy benefit analysis of a photovoltaic and thermal composite module system. Energy Conversion and Management. 154 (2017) 470-81.
    [142] X. Han, Y. Guo, Q. Wang, P. Phelan. Optical characterization and durability of immersion cooling liquids for high concentration III-V photovoltaic systems. Solar Energy Materials and Solar Cells. 174 (2018) 124-31.
    [143] G. Notton, C. Cristofari, M. Mattei, P. Poggi. Modelling of a double-glass photovoltaic module using finite differences. Applied Thermal Engineering. 25 (2005) 2854-77.
    [144] F.L. Diniz, C.V. Vital, L.A. Gómez-Malagón. Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids. Renewable Energy. (2022).
    [145] O. Rejeb, M. Sardarabadi, C. Ménézo, M. Passandideh-Fard, M.H. Dhaou, A. Jemni. Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Conversion and Management. 110 (2016) 367-77.
    [146] A.Z. Sahin, M.A. Uddin, B.S. Yilbas, A. Al-Sharafi. Performance enhancement of solar energy systems using nanofluids: An updated review. Renewable Energy. 145 (2020) 1126-48.
    [147] E. Bellos, C. Tzivanidis, K.A. Antonopoulos, G. Gkinis. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy. 94 (2016) 213-22.
    [148] J.X. Tang. Measurements of fluid viscosity using a miniature ball drop device. Rev Sci Instrum. 87 (2016) 054301.
    [149] R.S. Khedkar, N. Shrivastava, S.S. Sonawane, K.L. Wasewar. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid. International Communications in Heat and Mass Transfer. 73 (2016) 54-61.
    [150] O. Rejeb, H. Dhaou, A. Jemni. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renewable Energy. 77 (2015) 43-50.
    [151] H. Pierrick, M. Christophe, G. Leon, D. Patrick. Dynamic numerical model of a high efficiency PV–T collector integrated into a domestic hot water system. Solar Energy. 111 (2015) 68-81.
    [152] X. Han, Y. Sun, J. Huang, J. Zheng. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter. International Journal of Energy Research. 44 (2020) 4837-50.
    [153] S. Bhattarai, J.-H. Oh, S.-H. Euh, G. Krishna Kafle, D. Hyun Kim. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells. 103 (2012) 184-93.
    [154] T.T. Chow. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy. 75 (2003) 143-52.
    [155] L. Shi, M. Chew, V. Novozhilov, P. Joseph. Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone”. Polymers. 7 (2015) 1979-97.
    [156] heraeus,2022, URL: https://www.heraeus.com.
    [157] S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, S. Chiashi, J. Shiomi, et al. Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. International Journal of Heat and Mass Transfer. 55 (2012) 3885-90.
    [158] M. Li, G. Gui, Z. Lin, L. Jiang, H. Pan, X. Wang. Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. Sustainability. 10 (2018) 2657.
    [159] TOP Nano Technology, 2022, URL: https://www.ssnano.net
    [160] A. Kazemian, M. Khatibi, S.R. Maadi, T. Ma. Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Applied Energy. 295 (2021) 116859.
    [161] T. Ma, M. Li, A. Kazemian. Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Applied Energy. 261 (2020) 114380.
    [162] H.A. Kazem, M.T. Chaichan, A.H.A. Al‐Waeli, K. Sopian. Investigation of a nanofluid‐based photovoltaic thermal system using single‐wall carbon nanotubes: An experimental study. International Journal of Energy Research. 45 (2021) 10285-303.
    [163] D. Das, A.D. Kamble, P. Kalita. Performance investigation of transparent photovoltaic‐thermal collector with horizontal oscillating and rectangular spiral flow patterns. International Journal of Energy Research. 46 (2022) 239-53.
    [164] E.D. Rounis, A. Athienitis, T. Stathopoulos. Review of air-based PV/T and BIPV/T systems-Performance and modelling. Renewable Energy. 163 (2021) 1729-53.
    [165] M. Sangeetha, S. Manigandan, B. Ashok, K. Brindhadevi, A. Pugazhendhi. Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production. Fuel. 286 (2021).
    [166] A. Abdelrazik, R. Saidur, F. Al-Sulaiman. Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter. Energy. 215 (2021) 119172.
    [167] A. Abdelrazik, K. Tan, N. Aslfattahi, R. Saidur, F.A. Al‐Sulaiman. Optical properties and stability of water‐based nanofluids mixed with reduced graphene oxide decorated with silver and energy performance investigation in hybrid photovoltaic/thermal solar systems. International Journal of Energy Research. 44 (2020) 11487-508.
    [168] C. Zhang, C. Shen, Y. Zhang, C. Sun, D. Chwieduk, S.A. Kalogirou. Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid. Renewable Energy. 180 (2021) 30-9.
    [169] W.C. Meraje, C.-C. Huang, J. Barman, C.-Y. Huang, C.-F.J. Kuo. Design and experimental study of a Fresnel lens-based concentrated photovoltaic thermal system integrated with nanofluid spectral splitter. Energy Conversion and Management. 258 (2022) 115455.
    [170] G. Wang, Z. Zhang, T. Jiang, J. Lin, Z. Chen. Thermodynamic and optical analyses of a novel solar CPVT system based on parabolic trough concentrator and nanofluid spectral filter. Case Studies in Thermal Engineering. (2022) 101948.
    [171] A.R. Mallah, M.N.M. Zubir, O.A. Alawi, K.M.S. Newaz, A.B.M. Badry. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: fundamentals and applications. Solar Energy Materials and Solar Cells. 201 (2019) 110084.
    [172] M. Du, G. Tang, T. Wang. Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing. Solar Energy. 183 (2019) 501-11.
    [173] M. Du, G. Tang. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy. 137 (2016) 393-400.
    [174] R.A. Taylor, N. Hjerrild, N. Duhaini, M. Pickford, S. Mesgari. Stability testing of silver nanodisc suspensions for solar applications. Applied Surface Science. 455 (2018) 465-75.
    [175] I. Ahmad Qeays, S. Mohd. Yahya, M. Saad Bin Arif, A. Jamil. Nanofluids application in hybrid Photovoltaic Thermal System for Performance Enhancement: A review. AIMS Energy. 8 (2020) 365-93.
    [176] J. Walshe, P.M. Carron, S. McCormack, J. Doran, G. Amarandei. Organic luminescent down-shifting liquid beam splitters for hybrid photovoltaic-thermal (PVT) applications. Solar Energy Materials and Solar Cells. 219 (2021).
    [177] J. Walshe, P.M. Carron, C. McLoughlin, S. McCormack, J. Doran, G. Amarandei. Nanofluid Development Using Silver Nanoparticles and Organic-Luminescent Molecules for Solar-Thermal and Hybrid Photovoltaic-Thermal Applications. Nanomaterials (Basel). 10 (2020) 1201.
    [178] A.S. Abdelrazik, R. Saidur, F.A. Al-Sulaiman. Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter. Energy. 215 (2021) 119172.
    [179] X. Han, X. Zhao, J. Huang, J. Qu. Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems. Renewable Energy. 188 (2022) 573-87.
    [180] M. Tsuji, S. Gomi, Y. Maeda, M. Matsunaga, S. Hikino, K. Uto, T. Tsuji, H. Kawazumi. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir. 28 (2012) 8845-61.
    [181] S. Abbasi. The thermal conductivity modeling of nanofluids involving modified Cu nanorods by Ag nanoparticles. Heat and Mass Transfer. 55 (2018) 891-7.
    [182] M. Gupta, A.K. Dubey, V. Kumar, D.S. Mehta. Experimental study of combined transparent solar panel and large Fresnel lens concentrator based hybrid PV/thermal sunlight harvesting system. Energy for Sustainable Development. 63 (2021) 33-40.
    [183] G. Raam Dheep, A. Sreekumar. Experimental Studies on Energy and Exergy Analysis of a Single-Pass Parallel Flow Solar Air Heater. Journal of Solar Energy Engineering. 142 (2020).
    [184] Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin. A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc. 133 (2011) 18931-9.

    QR CODE