簡易檢索 / 詳目顯示

研究生: Vincent Kusuma
Vincent Kusuma
論文名稱: 植基於結合深度合成無誤差模型及藏量最大化之可逆式資料隱藏應用於深度圖
Joint Depth No-Synthesis-Error Model and Embedding Capacity-Maximization based Reversible Data Hiding for Depth Maps
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 馮輝文
Huei-Wen Ferng
黃元欣
Yuan-Shin Hwang
花凱龍
Kai-Lung Hua
吳怡樂
Yi-Leh Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 39
中文關鍵詞: 彩圖加上深度圖編碼模型深度圖深度合成無誤差模型藏量的最大化無失真之彩現視角
外文關鍵詞: Color plus depth coding model, Depth map, Depth no-synthesis error model, Maximization of embedding capacity, Lossless rendered view
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中提出了一個新的可逆式資料隱藏法,此方法結合了深度合成無誤差模型及藏量最大化並應用於深度圖。本篇論文所提之可逆式資料隱藏方法的前半部分──深度合成無誤差模型──不會在彩現的虛擬視角中產生誤差,得到無失真之彩現視角。本篇論文所提之可逆式資料隱藏方法的後半部分,藉由完全地利用存在於深度圖中的大片平滑區域,我們提出一個新穎的遞迴方法使得藏量最大化。基於九個典型的3D測試深度圖,實驗結果證明,相較於五個優異的比較方法,所提之新穎且有效的可逆式資料隱藏法應用於深度圖時有顯著的藏量改善。


    In this thesis, a new reversible data hiding (RDH) method, which joins the depth no-synthesis-error (DNOSE) model and the maximization of embedding capacity, for depth maps is proposed. The former part of the proposed RDH method, the DNOSE model, causes no distortion in the rendered virtual view, leading to the lossless rendered view. The latter part of the proposed RDH method, a novel recursive approach is proposed to maximize the embedding capacity by fully exploiting the large smooth areas existed in the depth map. Based on the nine typical 3D test depth maps, the experimental results demonstrated that the proposed novel and effective RDH method for depth maps has significant embedding capacity improvement when compared with the five state-of-the-art RDH methods.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Weakness in Existing RDH Methods for Depth Maps and the Motivation . . . . 2 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Depth Image-Based Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Depth No-Synthesis-Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 DNDE-based RDH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 DNDE Embedding Hidden Data Strategy . . . . . . . . . . . . . . . . . . . 7 2.3.2 DNDE Extraction and Recovering Strategy . . . . . . . . . . . . . . . . . . 8 2.3.3 Analysis on DNDE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 RDNRDH Embedding Hidden Data Strategy . . . . . . . . . . . . . . . . . . . . . 13 3.2 RDNRDH Extraction and Recovering Strategy . . . . . . . . . . . . . . . . . . . . 14 3.3 RDNRDH new layer strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Overhead and Error Map Embedding Strategy . . . . . . . . . . . . . . . . . . . . . 15 3.5 Procedure of the proposed RDNRDH . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 Analysis on RDNRDH Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6.1 Optimizing Hidden Data Capacity . . . . . . . . . . . . . . . . . . . . . . . 20 3.6.2 Preparing Layers in RDNRDH . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    [1] P. Aflaki, M. M. Hannuksela, J. Hakkinen, P. Lindroos, and M. Gabbouj, “Subjective study on compressed asymmetric stereoscopic video,” IEEE International Conference on Image Processing, pp. 4021-4024, Sept. 2010.
    [2] C. C. Chang, Y. H. Huang, T. C. Lu, “A difference expansion based reversible information hiding scheme with high stego image visual quality,” Multimedia Tools and Applications, Vol. 76, No. 10, pp. 12659-12681, May 2017.
    [3] C. C. Chang, C. Y. Lin, and Y. H. Fan, “Lossless data hiding for color images based on block truncation coding,” Pattern Recognition, Vol. 41, No. 7, pp. 2347-2357, July 2008.
    [4] K. L. Chung, W. J. Yang and W. N. Yang, “Reversible data hiding for depth maps using the depth no-synthesis-error model,” Information Sciences, pp. 159-175, June 2014.
    [5] Dimenco. (n.d.). 50” Technical specification. Available: https://www.dimenco.eu/downloads/DM504MAS_product_leaflet.pdf.
    [6] DVB Consortium. (2010, Jul.). DVB commercial requirements for DVB 3-D-TV, [Online]. Available: http://www.dvb.org.
    [7] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV,” Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI, Vol. 5291 pp. 93-104, May 2004.
    [8] Microsoft. (n.d.). Kinect for windows sensor components and specifications, [online]. Available: https://msdn.microsoft.com/en-us/library/jj131033.aspx
    [9] K. Müller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F. H. Rhee, G. Tech, M. Winken, and T. Wiegand, “3D high-efficiency video coding for multi-view video and depth data,” IEEE Transactions on Image Processing, Vol. 22, No. 9, pp. 3366-3378, May 2013.
    [10] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transaction on Circuit and System for Video Technology, Vol. 16, No. 3, pp. 354-362, Mar. 2006.
    [11] B. Ou, X. Li, Y. Zhao, R. Ni, “Efficient color image reversible data hiding based on channel dependent payoad partition and adaptive embedding,” Signal Processing, Vol, 108, pp. 642-657, Mar. 2015.
    [12] S. C. Pei and Y. Y. Wang, “A new 3D unseen visible watermarking and its applications to multimedia,” IEEE Global Conference on Consumer Electronics, pp. 140-143, Oct. 2014.
    [13] S. C. Pei and Y. Y. Wang, “Auxiliary metadata delivery in view synthesis using depth no synthesis error model,” IEEE Transactions on Multimedia, Vol. 17, No. 1, pp. 128-133, Nov. 2015.
    [14] V. Sachnev, H. J. Kim, J am, S. Suresh, and Y. Q. Shi, “Reversible watermarking algorithm using sorting and prediction,” IEEE Transaction on Circuit and System for Video Technology, Vol. 19, No. 7, pp. 989-999, Apr. 2009.
    [15] F. Shao, G. Jiang, M. Yu, and Y. S. Ho, “Asymmetric coding of multiview video plus depth based 3-D video for view rendering,” IEEE Transactions on Multimedia, Vol. 14, No. 1, pp. 157-167, Feb. 2012.
    [16] A. Smolic, K. Müller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, “Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems,” IEEE International Conference on Image Processing, pp. 2448-2451, Oct. 2008.
    [17] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for reversible watermarking,” IEEE Transactions on Image Processing, Vol. 16, No. 3, pp. 721-730, Feb. 2007.
    [18] D. Tian, P. L. Lai, P. Lopez, C. Gomila, “View synthesis tchniques for 3D video,” Proceedings of the SPIE, Vol. 7443, pp. 74430T-1-74430T-11, Sept. 2009.
    [19] J. Wu, L. Li, W. Dong, G. Shi, W. Lin, and C.-C. J. Kuo, “Enhanced Just Noticeable Difference Model for Images With Pattern Complexity,” IEEE Transactions on Image Processing, Vol. 26, No. 6, pp. 2682-2693, Jun. 2017.
    [20] H. Yao, C. Qin, Z. Tang, Y. Tian, “Guided filtering based color image reversible data hiding,”Journal of Visual Communication and Image Representation, Vol. 43, pp. 152-163, Feb. 2017.
    [21] Y. Zhao, C. Zhu, Z. Chen, and L. Yu, “Depth no-synthesis-error model for view synthesis in 3-D video,” IEEE Transaction on Image Processing, Vol. 20, No. 8, pp. 2221-2228, Feb. 2011.

    QR CODE