簡易檢索 / 詳目顯示

研究生: 林彥彤
Yang-Tong Lin
論文名稱: 結合混合波束成型與頻域索引調變之研究
Research on Frequency Domain Index Modulation Combining with Hybrid beamforming
指導教授: 張立中
Li-Chung Chang
口試委員: 陳永芳
Yang-Fang Chen
曾恕銘
Shu-Ming Tseng
劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 5G毫米波混合波束成型正交分頻多工索引調變錯誤率可實現率
外文關鍵詞: 5G, mmWave, Hybrid beamforming, OFDM, Index modulation, BER, Achievable rate
相關次數: 點閱:410下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

與傳統的通訊方法相比,索引調變是一個通過將傳送中可用的介質或資源利用其可選擇不同的使用方式來傳送額外附加的數據位元,現已有許多索引調變的技術被開發出還應付5G及未來充滿挑戰性和多樣化需求,但近年來關於用於頻域上的索引調變研究中都沒有考量在毫米波(mmWave)環境下傳送訊號,然而在5G通訊對於傳輸速率以及行動頻寬的高要求下,毫米波(頻率範圍為30GHz 到 300GHz的電磁波)是有巨大潛力的頻段,然而相較於過去所使用的商用頻段(6GHz以下),毫米波由水氣、氧氣吸收所造成的傳輸損耗更加嚴重,造成覆蓋範圍小、穿透性差等等缺陷,使它實施上有些困難,而解決此問題的方法之一便是使用波束成型(Beamforming)技術再配合上大規模的天線陣列就能夠有效地達成能量集中的效果。而波束成型技術根據架構上的不同可以分為三種,分別為類比波束成型(Analog beamforming)、數位波束成型(Digital beamforming)、混和波束成形(Hybrid beamforming),但綜合考量效能以及實施上的可行性來說,混和波束成型是最佳的方案。
基於上述原因,本論文提出將現有與本論文提出的頻域索引調變結合寬頻混合波束成形,分別為HB-OFDM-IM、HB-OFDM-GIM以及HB-HSNM-GIM,探討在結合混合波束成形後是否依舊能夠維持較好的BER性能,以及比較各方案的Achievable rate。


Compared with the traditional communication method, index modulation is a method transmitting additional data bits by using the available media or resources in different ways. There are many technologies for index modulation have been developed to meet the challenging and diverse needs of 5G and the future.However, in recent years, the research on index modulation in the frequency domain has not considered transmitting signals in the mmWave environment.
Because of the high requirements of 5G communication for transmission rate and mobile bandwidth, millimeter wave is being a key technology. Unfortunately, compared with the commercial frequency bands used in the past, the transmission loss of millimeter waves caused by water vapor and oxygen absorption is more serious, resulting in defects such as small coverage and poor penetration, making it difficult to implement.
One of the ways to solve this problem is to use beamforming technology combined with a large-scale antenna array to effectively achieve the effect of energy concentration. The beamforming technology can be divided into three types according to different architectures, namely Analog beamforming, Digital beamforming, and Hybrid beamforming. However, considering the performance and feasibility of implementation, hybrid beamforming is the best solution.
Based on the above reasons, this paper proposes to combine the existing and proposed index modulation with hybrid beamforming, namely HB-OFDM-IM, HB-OFDM-GIM and HB-HSNM-GIM, to explore whether the hybrid beamforming can be combined with hybrid beamforming ,and it can still maintain good BER performance.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 縮寫索引 X 索引符號 XI 第1章 緒論 1 1.1 研究動機 1 1.2 論文貢獻 2 1.3 章節概要 3 第2章 文獻回顧與系統架構介紹 4 2.1 波束成型技術 4 2.1.1 窄頻全連接型混合波束成形 6 2.1.2 窄頻子連接型混合波束成形 10 2.1.3 寬頻全連接型混合波束成形 13 2.1.4 寬頻子連接型混合波束成形 17 2.1.5 窄頻混合波束成形演算法 19 2.1.6 寬頻混合波束成形演算法 21 2.2 通道模型 34 2.3 索引調變技術 36 2.3.1 索引調變(Index Modulation) 36 2.3.2 頻域索引調變 37 第3章 提出的系統架構與分析方法 47 3.1 HB-OFDM-IM 47 3.2 HB-OFDM-GIM 50 3.3 HB-HSNM-GIM 51 3.4 複雜度 55 第4章 模擬結果與討論 56 4.1 HB-OFDM、HB-OFDM-IM、HB-OFDM-GIM、HB-HSNM-GIM 之錯誤率性能比較 59 4.1.1 三種全連接型混合波束成形演算法的錯誤率比較 60 4.1.2 子連接型混和波束成形演算法 68 4.2 HB-OFDM、HB-OFDM-IM、HB-OFDM-GIM、HB-HSNM-GIM 之可實現率比較 76 第5章 結論與未來研究方向 87 參考文獻 89  

[1] I. Ahmed et al., "A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives," in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060-3097, Fourthquarter 2018, doi: 10.1109/COMST.2018.2843719.
[2] O. El Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, "Low complexity precoding for large millimeter wave MIMO systems," in 2012 IEEE international conference on communications (ICC), 2012: IEEE, pp. 3724-3729.
[3] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter wave wireless communications. Pearson Education, 2015.
[4] J. Lee and Y. H. Lee, "AF relaying for millimeter wave communication systems with hybrid RF/baseband MIMO processing," in 2014 IEEE International Conference on Communications (ICC), 2014: IEEE, pp. 5838-5842.
[5] T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, "Hybrid beamforming for millimeter wave systems using the MMSE criterion," IEEE Transactions on Communications, vol. 67, no. 5, pp. 3693-3708, 2019.
[6] M. Gao et al., "On hybrid beamforming of mmWave MU-MIMO system for high-speed railways," in ICC 2019-2019 IEEE International Conference on Communications (ICC), 2019: IEEE, pp. 1-6.
[7] M. Majidzadeh, J. Kaleva, N. Tervo, H. Pennanen, A. Tölli, and M. Latva-Aho, "Rate maximization for partially connected hybrid beamforming in single-user MIMO systems," in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018: IEEE, pp. 1-5.
[8] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel," IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331-4340, 2011.
[9] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485-500, 2016.
[10] X. Zhao, T. Lin, Y. Zhu, and J. Zhang, "Partially-connected hybrid beamforming for spectral efficiency maximization via a weighted MMSE equivalence," IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8218-8232, 2021.
[11] Y. A. Chau and S.-H. Yu, "Space modulation on wireless fading channels," in IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No. 01CH37211), 2001, vol. 3: IEEE, pp. 1668-1671.
[12] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Transactions on vehicular technology, vol. 57, no. 4, pp. 2228-2241, 2008.
[13] Y. Cui, X. Fang, and L. Yan, "Hybrid spatial modulation beamforming for mmWave railway communication systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9597-9606, 2016.
[14] R. Abu-Alhiga and H. Haas, "Subcarrier-index modulation OFDM," in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009: IEEE, pp. 177-181.
[15] E. Başar, Ü. Aygölü, E. Panayırcı, and H. V. J. I. T. o. s. p. Poor, "Orthogonal frequency division multiplexing with index modulation," vol. 61, no. 22, pp. 5536-5549, 2013.
[16] R. Fan, Y. J. Yu, and Y. L. J. I. t. o. w. c. Guan, "Generalization of orthogonal frequency division multiplexing with index modulation," vol. 14, no. 10, pp. 5350-5359, 2015.
[17] D. Tsonev, S. Sinanovic, and H. Haas, "Enhanced subcarrier index modulation (SIM) OFDM," in 2011 IEEE GLOBECOM Workshops (GC Wkshps), 2011: IEEE, pp. 728-732.
[18] A. M. Jaradat, J. M. Hamamreh, and H. Arslan, "OFDM with subcarrier number modulation," IEEE Wireless Communications Letters, vol. 7, no. 6, pp. 914-917, 2018.
[19] F. Sohrabi and W. Yu, "Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1432-1443, July 2017, doi: 10.1109/JSAC.2017.2698958.
[20]A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.
[21] H. Men and M. Jin, "A Low-Complexity ML Detection Algorithm for Spatial Modulation Systems With MMPSK Constellation," in IEEE Communications Letters, vol. 18, no. 8, pp. 1375-1378, Aug. 2014, doi: 10.1109/LCOMM.2014.2331283.
[22] X. Gao, L. Dai, S. Han, C. -L. I and R. W. Heath, "Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998-1009, April 2016, doi: 10.1109/JSAC.2016.2549418.
[23] S. Doğan Tusha, A. Tusha, E. Basar and H. Arslan, "Multidimensional Index Modulation for 5G and Beyond Wireless Networks," in Proceedings of the IEEE, vol. 109, no. 2, pp. 170-199, Feb. 2021, doi: 10.1109/JPROC.2020.3040589.
[24] Series, M. "IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond." Recommendation ITU 2083 (2015): 0.
[25] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014, doi: 10.1109/TWC.2014.011714.130846.

QR CODE