簡易檢索 / 詳目顯示

研究生: 蔡宗霖
Tsung-Lin Tsai
論文名稱: 用於正交分頻多工系統之載波頻率偏移估測器的設計與實現
Design and Implementation of Carrier Frequency Offset Estimator for OFDM system
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 吳乾彌
Chen-Mie Wu
林昌鴻
Chang Hong Lin
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: OFDMMIMOML載波頻率偏移位元錯誤率。
外文關鍵詞: OFDM, MIMO, ML, CFO, BER
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對SISO及2x2MIMO之OFDM系統提出以Maximum Likelihood(ML)為主要架構的載波頻率偏移(Carrier Frequency Offset,CFO)估測系統,透過同調(coherent)檢測的概念,設計所需的解析度(Resolution)以決定ML所需的相關器個數,解析度越高使估測出的CFO範圍就會越細。將解析度對應成數個參考頻率點的複數弦波,放至相關器中各別計算與OFDM接收封包之長訓練符元(Long Training Symbol,LTS)的相關性,找出在哪一參考頻率點可以得到最大相關性,便以其當作CFO的估測值。在2x2MIMO時,OFDM系統參照IEEE 802.11n標準,加入循環位移分集(Cyclic Shift Diversity,CSD)技術,估測時必須分開計算其訊號來自天線A及天線B的情況並將相關性合併比較,提高抗雜訊能力。從硬體角度,當ML的解析度越高,雖然可讓估測精準度提高,但硬體資源需求也相對越大。在2x2MIMO的模擬情況中,ML的抗雜訊能力在位元錯誤率表現優於預設之CFO估測系統。本論文以此演算法為目標,透過Verilog硬體描述語言設計,利用Xilinx ISE進行合成,最後將電路實現於FPGA開發板上。


    This thesis proposes the hardware design and implementation of a Maximum Likelihood (ML) Carrier Frequency Offset (CFO) estimation algorithm for SISO and 2x2 MIMO OFDM systems. The resolution of the CFO estimation algorithm determines the number of ML correlators and reference complex waveforms for different frequencies. Hence higher resolution enhances estimation accuracy but requires more hardware resources. The algorithm calculates the correlations between the Long Training Symbol (LTS) in every packet and the reference complex waveforms. Finally, the frequency value which produces the maximum correlation is the estimated CFO value. For the 2x2 MIMO system, Cyclic Shift Diversity (CSD) is added to the OFDM system following the IEEE 802.11n standard. It increases the anti-noise capability since the correlations are calculated separately for both antennas A and B and combined for comparison. Moreover, simulation results for the 2x2 MIMO system show that ML algorithm has better BER performance than the default system of CFO estimation. Using Verilog HDL for design and Xilinx ISE for circuit synthesis, we implement this algorithm on an FPGA development board.

    第一章 緒論 第二章 OFDM系統架構 2.1 正交分頻多工系統 2.1.1 OFDM的調變(Modulation) 2.1.2 OFDM的正交姓(Orthogonality) 2.1.3 OFDM的解調變(Demodulation) 2.1.4 OFDM調變/解調變的數位化 2.1.5 護衛區間(Guard interval)與循環字首(Cyclic Prefix) 2.2 多輸入多輸出系統 2.2.1 循環位移分集技術(Cyclic Shift Diversity,CSD) 2.3 封包架構 2.4 傳送端與接收端架構 第三章 實作平台 3.1 WARP v3 FPGA開發板 3.2 模擬工具與平台 3.2.1 產生Netlist方式 3.2.2 XPS 3.2.2 SDK 3.2.3 Xilinx ISE Design Tool 第四章 載波頻率偏移估測演算法 4.1 Maximum Likelihood using correlation estimation 4.2 Differential estimation 第五章 載波頻率偏移估測電路設計 5.1 電路設計流程 5.2 演算法電路設計 5.2.1 SISO電路設計架構 5.2.2 MIMO電路設計架構 5.2.3 電路設計實現 第六章 模擬結果與分析 6.1 錯誤率檢測系統 6.1.1 Bit Error Rate(BER) 6.1.2 Packet Error Rate(PER) 6.2 SISO在AWGN channel之BER比較 6.3 SISO在Rayleigh fading channel之BER比較 6.4 MIMO在AWGN channel之BER比較 6.5 MIMO在Rayleigh fading channel之BER比較 第七章 結論 參考文獻

    [1] IEEE 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” IEEE 802.11, 1999.
    [2] IEEE 802.11a, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band,” IEEE 802.11a, 1999.
    [3] IEEE 802.11g, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band,” IEEE 802.11g, 2003.
    [4] G. L. Stuber, J. R. Barry, S.W. Mclaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM Wireless Communications,” Processing of the IEEE, vol. 92, no. 2, Feb. 2004, pp.271-294.
    [5] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 628-634, Oct. 1971.
    [6] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1980, pp. 964-967.
    [7] T. M. Schmidl, and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, Dec. 1997.
    [8] J. Li, G. Liu, and G. B. Giannakis, “Carrier Frequency Offset Estimation for OFDM-Based WLANs,” IEEE Signal Process. Lett., vol. 8, no. 3, March 2001.
    [9] M. Li, J. Zhao, and L. K. Chen, “Blind Maximum-likelihood Frequency Offset Estimation for Coherent Fast OFDM Receivers,” 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, 2013.
    [10] J. Mar, C. C. Kuo, and S. H. Chou, “FPGA Implementation of SDR Based CFO Estimation and Compensation Circuit for OFDM System,” J Sign Process Syst, 2013.
    [11] J. Cho, Y. Cho, M. R. Islam, J. Kim, and W. K. Cho, “Hardware-Efficient Auto-Correlation for Synchronization of MIMO-OFDM WLAN Systems,” SoC Design Conference (ISOCC), 2009.
    [12] W. H. Tseng, C. C. Chang, and C. K. Wang, “Digital VLSI OFDM Transceiver Architecture for Wireless SoC Design,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium, 2005.
    [13] C. Yu, C. H. Sung, C. H. Kuo, and M. H. Yen, and S. J. Chen, “Design and Implementation of a Low-Power OFDM Receiver for Wireless Communications,” Consumer Electronics, IEEE Transactions, 2012.
    [14] A. Troya, K. Maharatna, M. Krstiˇc, E. Grass, U. Jagdhold, and R. Kraemer, “Low-Power VLSI Implementation of the Inner Receiver for OFDM-Based WLAN Systems,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 2, MARCH 2008
    [15] Xilinx LogiCORE IP DDS Compiler v4.0 Product Specification, DS558, March 2013
    [16] W. Y. Zou, and Y. Wu, “COFDM: An overview,” IEEE Trans.
    Broadcasting, vol. 41, no. 1, pp. 1–8, Mar. 1995.
    [17] S. M. Jackman, M. Swartz, M. Burton, T. W. Head, “Certified Wireless Design Professional Official Study Guide”, CWN Exam PW0-250, pp. 340-343, Feb. 2011
    [18] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,
    “V-BLAST: An architecture for realizing very high data rates over rich scattering wireless channels,” in Proc. ISSSE-98, Sep. 1998, pp. 295-300
    [19] M. R. McKay and I. B. Collings, “Capacity and performance of MIMO-BICM with zero forcing receivers,” IEEE Trans. Commun., vol. 53, no. 1, pp. 74-83, Jan. 2005.
    [20] M. Honqlei, M. J. Juntti, “Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation,” IEEE Trans. Veh. Technol., vol. 54, pp. 2003-2016, Nov. 2005.
    [21] IEEE Std 802.11a-1999, “Supplement to IEEE Standard for Information
    Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band,”
    1999.
    [22] WARP Forums:http://warpproject.org/trac/wiki/HardwareUsersGuides/WARPv3
    [23] 劉紹漢, 全華, SOC系統晶片設計-使用Xilinx EDK, 2014.
    [24] 徐文波, 田耘, Xilinx FPGA開發實用教學, 佳魁資訊, 2013.
    [25] IEEE P802.11 Wireless LANs, “TGn Channel Models,” IEEE 802.11-03/940r4, May 2004.
    [26] P. Koopman, “32-bit cyclic redundancy codes for Internet applications,” in Proc. IEEE Int. Conf. on Dependable Systems and Networks, Washington, D.C., USA, Jun. 2002, pp. 459–468.

    QR CODE