簡易檢索 / 詳目顯示

研究生: 陳君政
Chun-Cheng - Chen
論文名稱: 適合於生醫應用之可編程四通道類比前端感測低功耗積體電路設計
The Low-Power Integrated Circuit Design of A Reconfigurable 4-Channel Analog Front End for Biomedical Sensing Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳新
Hsin Chen
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 類比前端感測電路生醫應用低功耗可重組化
外文關鍵詞: Analog front-end, biomedical application, low power, reconfigurability
相關次數: 點閱:270下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出適用於適合於生醫應用之可編程多通道類比感測前端低功耗積體電路,每一通道包含生理感測放大器、可變增益放大器及高線性度轉導電容濾波器,不同類比感測通道之類比輸出利用一逐漸趨近式類比至數位轉換器轉換為數位訊號,其中之感測電路利用懸浮閘電晶體及其相關之類比編程技術使感測類比前端電路達到低功耗、低雜訊及可編程之特性;並使用串並列輸出介面電路傳輸所有懸浮閘編程及校正所需之控制訊號以節省所需之晶片腳位,且所設計之類比感測前端電路可以依據使用者需求選擇不同的訊號處理路徑。此外,模組化之佈局方式可於未來需要整合更多類比感測通道時,可輕易擴增系統晶片之通道數,減少整合所需之時間。
本論文所設計之電路利用台積電0.35m標準CMOS製程設計並製作一四通道之類比前端感測晶片,其中並整合懸浮閘電晶體所需之編程電路。經量測可知,當類比感測電路之頻寬設定為100Hz時,所消耗之電流為50nA,等效輸入雜訊為2.85 ,計算所得之雜訊效能因數為2.48,動態範圍為46.24dB。當頻寬增加至1KHz時,所消耗之電流為634nA,等效輸入雜訊為3.03 ,計算所得之雜訊效能因數為2.98,動態範圍為46.33dB;量測所得之類比數位轉換器有效位元數為5.9Bits,最後並以心電訊號模擬器驗証晶片之功能。


This thesis presentslow-power integrated circuit design of a reconfigurable multi-channel analog sensing front end for biomedical applications. Each single channel consists of a biopotential sensing amplifier(LNA), a variable gain amplifier (VGA), and a linearized operationaltransconductance amplifier-capacitor(OTA-C) filter. The analog output signals from different channels are converted into digital format viaasuccessive approximationregisteranalog to digital converter(SAR ADC).By employingfloating-gate transistors and the relevant analog programming techniques, the analog sensing front-end circuits achieve features of low power, low noise and reconfigurability. Besides, to save the number of chip pins, serial-peripheral interface circuits are used to transmit the controls signals required for floating-gate programming and circuit calibration. The signal path can also be adjusted according to the demands of users. Moreover, the circuit layout are modulized so that the number of the sensing channels can be extended easily in the future.
The integrated circuits presented in this these have been designed and fabricated in a TSMC 0.35mstandard CMOS process. The chip includes four channel analog sensing front-end and the circuits for floating-gate programming. From the measurements, when the bandwidth is programmed at 100Hz, the total current consumption for single channel is 50nA with input referred noise of 2.85 . The calculated noise efficiency factor (NEF) is 2.48 and the dynamic range is 46.24dB. When the bandwidth is increased to 1kHz, the current consumption becomes 634nA with input referred noise of 3.03 and NEF of 2.98 and dynamic range is 46.33dB. The measured number of effective bits from the employed SAR ADC is 5.9. Finally, the functionality of the chip is verified by a signal from an ECG simulator.

指導教授推薦書 論文審定書 摘要 Abstract 目錄 圖目錄 表目錄 Ch1.類比前端電路之設計理念 1.1設計動機 1.2 醫療感測前端電路 1.3 類比記憶體及可靠性 Ch2.可編程類比前端感測電路設計 2.1 設計動機 2.2可重組化低功耗類比前端電路 2.2.1可編程低功耗低雜訊放大器 2.2.2可編程之可變增益放大器 2.2.3可編程之高線性輸入範圍轉導電容濾波器 2.2.4針對次臨界區操作下之正溫度補償電路 2.2.5逐漸趨近式類比數位轉換器 Ch3類比記憶體編程系統 3.1設計動機 3.2編程系統說明 3.2.1編程原理 3.2.2編程架構 3.2.3電荷幫浦電路 3.2.4 編程特定類比記憶體 3.2.5 類比記憶體陣列應用於多通道類比前端感測電路之佈局 Ch4量測結果以及討論 4.1量測結果 4.2討論以及文獻比較表 Ch5結論以及未來展望 5.1 論文結論 5.2未來展望 參考文獻

[1] L.R. Carley, “Trimming analog circuits using floating-gate analog MOS memory,” IEEE Journal of Solid-State Circuits, vol. 24, no. 6, pp. 1569-1575, Dec.1989.
[2] A. Thomsen and M. A. Brooke, “A floating gate MOSFET with tunneling injector fabricated using a standard double-poly silicon CMOS process,” IEEE Electron Device Letters, vol. 12, pp. 111-113, 1991.
[3] P. E. Hasler, “Foundations of Learning in Analog VLSI,” Ph.D. Thesis, California Institute of Technology, February 1997.
[4] S.-Y. Peng, P.E. Hasler, and D.V. Anderson, “An Analog Programmable Multidimensional Radial Basis Function Based Classifier,” IEEE Transactions on Circuits and Systems I, vol.54, no. 10, pp. 2148-2158, Oct. 2007.
[5]R. R. Harrison and C. Charles, “A low-power low-noise cmos amplifier for neural recording applications,” IEEE Journal of Solid–State Circuits, vol. 38, no. 6, pp. 958–965, 2003.
[6]Y.Tsividis, M. Banu, and J.Khoury. "Continuous-time MOSFET-C filter in VLSI, ”IEEE Journal of Solid–State Circuits, vol. 33, no. 2, pp. 125–140, 1986.
[7]M. Tavakoli and R. Sarpeshkar, ”A sinh resistor and its application to tanh linearization,” IEEE Journal of Solid–State Circuits,vol. 40, no. 2, pp. 536-543,2005.
[8]E.zalevli and P.E.Hasler,”Tunable highly linear floating-gate cmos resistor using common-mode linearization technique,” IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, vol. 55, no. 4, pp. 999–1010,2008.
[9] Kian Ann Ng and Yong Ping Xu, ”A compact, Low Input Capacitance Neural Recording Amplifier with Cin/Gain of 20fF.V/V,” IEEE Biomedical Circuits and System Conference, pp. 328-331, 2012
[10] S.Solus-Bustons, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinecio, "A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical application, " IEEE Transactions on Circuits and System II:Analog and Digital Signal Processing, vol, 47, no. 12,pp. 1391-1398, 2000.
[11] P.Corbishley and E. Rodriguez-Villegras, "A nanopower bandpass filter for detection for an acoustic signal in a wearable breathing detector, " IEEE Transactions and Biomedical Circuit and Systems, vol. 1, no. 3n pp. 163-171,2007
[12] E. Rodriguez- Villegas, A. J. Casson, and P.Corbishley, " A subhertz nanopower low-pass filter, "IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Porcessing, vol. 58, no. 6,pp. 351-355, 2011
[13] J.L. Bohorquez, M. Yip, A.P. Chandrakasan, and J. L. Dawson, " A biomedical sensor interface with a sinc filter and interface cancellation, " IEEE Journal of Solid-State Ciucuit, vol.46, no. 4, pp.746-756,2011
[14] R. Sarpeshkar, R. Lyon, and C. Mead, "A low-power wide-dynamic range analog VLSI cochlea, " Analog Integrated Circuits and Signal Processing, vol. 16, no. 3,pp. 245-274, 1998
[15] A. G. Katisamis, E.M. Drakakis, and R.F Lyon, "A biomedical, 4.5uW, 120dB, log-doman cochllea channel with AGC, "IEEE Journal of Soilid-State Circuits, vol.44, no. 3, pp.1006-1022, 2009.
[16] L.Acosta, M. Jimenez, R. G. Carvajal, A. J. Lopez-Martin, and J- Ramirez-Angulo, "Highly linear tunable CMOS Gm-C low-pass filter," IEEE Transcation on Circuits and System I:Fundamental Theory and Applications, vol, 56,no. 10, pp.2145-2158,2009
[17] S. Koziel and S. Szczepanski, " Design of highly linear tunalbe CMOS OTA for continuos-time filters, "IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.49 ,no.2, pp.110-122,2002
[18] E. Rodriguez-Villegas, A. Yufera, and A. Rueda, “A 1.25-V micropower Gm-C filter based on fgmos transistors operating in weak inversion,” IEEE Journal of Solid–State Circuits, vol. 39, no. 1, pp. 100–111, 2004.
[19] C.Mead, "Analog VLSI and neural systems. " ser. VLSI systems series, Addition-Wesley, 1989
[20] P. M. Furth and H. A. Ommani, “Low-voltage highly-linear transconductor design in subthreshold CMOS,”IEEE Proceedings of the Midwest Symposium on Circuits and Systems, Aug 1997.
[21] T. Delbruck, “’bump’ circuits for computing similarity and dissimilarity of
analog voltages,”Proceedings of the International Joint Conference,Neural
Networks, Jul 1991.
[22] H. Tanimoto, M. Koyama, and Y. Yoshida, “Realization of a 1-v active filter using a linearization technique employing plurality of emittercoupled pairs,” IEEE Journal of
[23] A. J. Casson and E. Rodriguez-Villegras, " A 60pw gmc continuous wavelet transform circuit for portable EEG systems, " IEEE Jounal of Soild-State Circuits, vol. 46,no. 6,pp. 1406-1415, 2011
[23] D.W Graham, P.E. Hasler, R, Chawla, and P.D. Smith, "A low-power programmable bandpass filter section for higher order filter applications. " IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, vol. 54, no .6,pp. 1164-1176, 2007.
[24]S. Rai, J. Holleman, and J. N. Pandey, “A 500 µW neural tag with 2µVrms AFEand frequency-multiplying MICS/ISM FSK transmitter,”IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb 2009.
[25]S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, ``A 60-db dynamic-range CMOS sixth-order 2.4-hz low-pass filter for medical applications,'' IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 12, pp. 1391 -- 1398, 2000.
[26] R. J. Widlar, “New developments in IC voltage regulators,” IEEE J.
Solid-State Circuits, vol. SC-6, no. 1, pp. 2–7, Feb. 1971.
[27] Y. P. Tsividis and R. W. Ulmer, “A CMOS voltage reference,” IEEE J.
Solid-State Circuits, vol. SC-13, no. 6, pp. 774–778, Dec. 1978.
[28] R. W. Ye and Y. P. Tsividis, “Bandgap voltage reference sources in
CMOS technology,” Electron. Lett., vol. 18, pp. 24–25, Jan. 1982.
[29]Tzu-Yun Wang, Min-Rui Lai, Christopher M. Twigg, Sheng-Yu Peng , “A Fully Reconfigurable Low-Niose Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor, “ IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411-422, 2014.
[30]Xiaodan Zou, Lei Liu, Jia Hao Cheong, Lei Tao, Peng Li, Ming-Yuan Cheng, Wang Ling Goh, Ramamoorthy Rajkumar, Gavin Stewart Dawe, Kuang-Wei Cheng,Minkyu Je , “A 100-channel 1-mW Implantable Neural Recording IC, ” IEEE Transactions on Circuits and System I , vol. 60, no. 10, pp. 2584-2596, 2013.
[31] Yongjia Li, Andre L. Mansano, Yuan Yuan, Duan Zhao, Wouter A Serdijn , “An ECG Recording Front-End With Continuous-Time Level-Crossing Sampling, “IEEE Transaction on Biomedical Circuits and Systems, vol. 8, no. 5, pp. 626-635, 2014.
[32]Chenglian Qian, Jordi Parramon, Edgar Sanchez-Sinencio, ” A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection, ”IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1392-1405, 2011.
[33]Alberto Rodriguez-Perez, Jes’us Ruiz-Amaya, Manuel Delgado-Restituto, Angel Rodriguez-Vazquez, “A Low-Power Programmable Neural Spike Detection Channel With Enbedded Calibration and Data Compression, “IEEE Transations on Biomedical Circuits and Systems, vol.6, no.2, pp.87-100, 2012.
[34]Yen-Po Chen, Dongsuk Jeon, Yoonmyung Lee, Yejoong Kim, Zhiyoong Foo, Inhee Lee, Nicholas B. Langhals, Grant Kruger, Hakan Oral, Omer Berenfeld, Zhengya Zhang, David Blaauw, Dennis Sylvester, “An Injectable 64 nW ECG Mixed-signal SoC in 65nm for Arrhythmia Monitoring, “IEEE Journal of Solid-State Circuits, vol. 50, no. 1, 2015

無法下載圖示 全文公開日期 2022/01/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE