簡易檢索 / 詳目顯示

研究生: 蔡政翰
Jeng-Han Tsai
論文名稱: 混合阻抗與模糊控制於機械手臂插銷組裝之應用
Hybrid Impedance and Fuzzy Control of Robot Manipulator for Peg-In-Hole Assembly Tasks
指導教授: 劉孟昆
MENG-KUN LIU
口試委員: 藍振洋
CHEN-YANG LAN
林紀穎
CHI-YING LIN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 阻抗控制模糊控制卡爾曼主動觀測器插銷組裝
外文關鍵詞: Impedance control, Fuzzy control, Kalman active observer, Peg-in-hole operation
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於自動化技術的發展,大部分的製造過程已被自動化設備取代,唯有組裝部分仍須仰賴大量的人力。其中主要是因為機械手臂並不如人類的雙手柔順,無法完成細緻的組裝動作,這個問題尤其在組裝電子零件時特別明顯。目前在執行自動化組裝時,必須先使用教導的方式設定孔位或零件位置,再控制機械手臂進行重復動作。然而在組裝的過程中,因為加工精度的限制或零件的滑動及鬆脫等突發狀況,常會造成組裝位置偏差而損壞零件。
因此本研究提出混合阻抗與模糊控制,利用架設在機械手臂終端器上的六軸力感應器量測力與力矩,動態調整機械手臂的位置與姿態(角度),使其在有誤差的情形下仍能完成插銷動作。為了克服環境干擾的影響,利用卡爾曼主動觀測器即時補償阻抗控制的位置輸出。此外本研究亦提出速度與軌跡修正策略以加快插銷速度。


With the advance of automation technology in recent years, most of the manufacturing processes have been replaced by automated equipments, from which the parts assembly tasks are being excluded and still rely on manpower. The major reason is that the robotic arm is not as flexible as human hand, and therefore robot arms are unable to complete the intricate assembly tasks, especially the assembly of electronic components. Currently, before a robot arm can execute an assembly task automatically, all the part positions need to be calibrated by using the control panel, and then the operator makes the robot arm move repetitively. However, during the practical assembly operation, the components are often damaged due to the misalignments caused by the limited precision, slippery, loose parts and so on.
As a result, a hybrid impedance and fuzzy control is proposed in this research. By measuring the reactive force and torque with a force sensor mounted on the robot end effector during the peg-in-hole operation, the position and the attitude of the robot arm can be adjusted in real time to overcome the error caused by misalignment. To eliminate the effect of environmental disturbances, a Kalman active observer is used to offset the output position from the impedance control. In addition, the speed strategy and the routing strategy are proposed to increase the assembly speed.

摘要 I ABSTRACT II 致謝 III 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 2 1.4 研究貢獻與架構 5 第二章 理論基礎 7 2.1 座標轉換 7 2.2 歐拉角 8 2.3 D-H表示法 9 2.4 正向運動學 12 2.5 反向運動學 14 2.6 機器人動力學 24 第三章 力回饋控制之理論 27 3.1 阻抗控制 27 3.2 模糊控制 30 3.3 卡爾曼主動觀測器 35 第四章 組裝策略 40 4.1 座標轉換策略 40 4.2 量測策略 43 4.3 速度策略 46 4.4 整體控制架構 49 第五章 組裝實驗 50 5.1 系統架構與設備 50 5.2 實驗流程 53 5.3 阻抗控制實驗 53 5.4 模糊控制實驗 58 5.5 混合阻抗與模糊控制實驗 60 5.6 速度策略之應用 61 5.7 卡爾曼主動觀測器之整合 64 5.8 重複組裝之實驗 65 第六章 結論與未來展望 67 6.1 結論 67 6.2 未來展望 68 參考文獻 70 附錄A 76 附錄B 80

[1] Osa, Takayuki, et al. Perforation risk detector using demonstration-based learning for teleoperated robotic surgery. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013.
[2] Winkler, Alexander; Suchy, Jakub. Force controlled contour following on unknown objects with an industrial robot. In: Robotic and Sensors Environments (ROSE), 2013 IEEE International Symposium on. IEEE, 2013.
[3] Hogan, Neville. Impedance control: An approach to manipulation. In:American Control Conference, 1984. IEEE, 1984. p. 304-313.
[4] Hogan, Neville. Impedance control: An approach to manipulation: Part II—Implementation. Journal of dynamic systems, measurement, and control, 1985, 107.1: 8-16.
[5] Zeng, Ganwen; Hemami, Ahmad. An overview of robot force control.Robotica, 1997, 15.05: 473-482.
[6] Luo, Ren C.; Yi, Chun Y.; Perng, Yi W. Gravity compensation and compliance based force control for auxiliarily easiness in manipulating robot arm. In: Control Conference (ASCC), 2011 8th Asian. IEEE, 2011.
[7] Luo, Ren C., et al. Adaptive impedance control for safe robot manipulator. In:Intelligent Control and Automation (WCICA), 2011 9th World Congress on. IEEE, 2011.
[8] Hsu, Feng-Yi; Fu, Li-Chen. Intelligent robot deburring using adaptive fuzzy hybrid position/force control. Robotics and Automation, IEEE Transactions on, 2000, 16.4: 325-335.
[9] Hsu, Su-Hau; Fu, Li-Chen. Adaptive decentralized compliant control of robot manipulators. In: American Control Conference, 2002. Proceedings of the 2002. IEEE, 2002.
[10] Hsu, Li-Chun, et al. A gravity compensation-based upper limb rehabilitation robot. In: American Control Conference (ACC), 2012. IEEE, 2012. p. 4819-4824.
[11] 曾家俊、黃漢邦,力回饋手套與人工義肢的整合,2002年碩士論文。
[12] 陳俊廷、楊燿州,三爪機械手之控制驅動與感測系統之開發與應用展示,2010年碩士論文。
[13] 林洺樞、楊谷洋,力回饋系統於機器人遠端操控之應用,2004年碩士論文
[14] 葉正皓、李祖聖,居家服務型機器人抓取姿態與模糊握力控制法之設計與實現,2012年碩士論文。
[15] 喬執中、董必正,力量控制於機械手臂運動之應用,2000年碩士論文。
[16] 鄧柏仁、蔡清池,具力及3D感測之雙手臂機器人之混合位置、姿態及力控制,2013年碩士論文。
[17] 葉能偉、林仕亭,雙機械臂於卡氏座標下之適應位置與力量控制 ,2006年碩士論文。
[18] 查厚錦、丁鏞,機器手臂之運動軌跡規劃及力量控制研究,1999年碩士論文。
[19] 李錦龍、蕭俊祥,形狀記憶合金驅動機械手夾之力回授控制,2014年碩士論文。
[20] 吳佳鴻、張文中,基於雙眼視覺及力回饋之機械手臂追蹤控制系統,2012年碩士論文。
[21] 游喬焜、黃緒哲,以系統晶片結合力量感測器發展具軌跡與力量控制功能之機械手臂,2008年碩士論文。
[22] 林志明、黃昌群,應用適應性控制於單軸撓性機械手臂之力量控制,2004年碩士論文。
[23] 林欽榮、邱士軒,主控端以力量為指令之機械手臂遠端位置/力量控制之研究,2002年碩士論文。
[24] 許家騰、邱士軒,使用位置命令之機械手臂混合位置/力量控制之研究,2001年碩士論文。
[25] Lawrence, Dale A. Impedance control stability properties in common implementations. In: Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference on. IEEE, 1988.
[26] Newman, Wyatt S. Stability and performance limits of interaction controllers.Journal of dynamic systems, measurement, and control, 1992, 114.4: 563-570.
[27] Colbaugh, R.; Seraji, H.; Glass, K. Impedance control for dexterous space manipulators. In: Decision and Control, 1992., Proceedings of the 31st IEEE Conference on. IEEE, 1992.
[28] Hogan, Neville. Stable execution of contact tasks using impedance control. In: Robotics and Automation. Proceedings. 1987 IEEE International Conference on. IEEE, 1987.
[29] Blauer, Michael; Bélanger, Pierre R. State and parameter estimation for robotic manipulators using force measurements. Automatic Control, IEEE Transactions on, 1987, 32.12: 1055-1066.
[30] Homayounzade, Mohamadreza; Keshmiri, Mehdi. Observer-based impedance control of robot manipulators. In: Robotics and Mechatronics (ICRoM), 2013 First RSI/ISM International Conference on. IEEE, 2013.
[31] Nam, Kanghyun, et al. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches. Industrial Electronics, IEEE Transactions on, 2013, 60.3: 988-1000.
[32] Barnett, Glen; Zehnwirth, Ben. Kalman Filter: Overview. Wiley StatsRef: Statistics Reference Online, 2004.
[33] De Schutter, Joris. Improved force control laws for advanced tracking applications. In: Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference on. IEEE, 1988.
[34] Cortesão, Rui. On kalman active observers. Journal of Intelligent and Robotic Systems, 2007, 48.2: 131-155.
[35] Cortesaoý, Rui, et al. Force control with a kalman active observer applied in a robotic skill transfer system. 2000.
[36] Passino, Kevin M.; Yurkovich, Stephen; Reinfrank, Michael. Fuzzy control. Menlo Park, CA: Addison-wesley, 1998.
[37] Nagata, Fusaomi; Watanabe, Keigo; Izumi, Kiyotaka. Position-based impedance control using a fuzzy compensator. In: Knowledge-Based Intelligent Information Engineering Systems, 1999. Third International Conference. IEEE, 1999.
[38] Ham, C.; Qu, Z.; Johnson, R. Robust fuzzy control for robot manipulators. In: Control Theory and Applications, IEE Proceedings-. IET, 2000. p. 212-216.
[39] Ho, H. F.; Wong, Yiu-Kwong; Rad, Ahmad B. Robust fuzzy tracking control for robotic manipulators. Simulation Modelling Practice and Theory, 2007, 15.7: 801-816.
[40] Jin, Yaochu. Decentralized adaptive fuzzy control of robot manipulators.Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 1998, 28.1: 47-57.
[41] Duffy, Joseph; Duffy, Joseph. Analysis of mechanisms and robot manipulators. London: Edward Arnold, 1980.
[42] Tsai, Lung-Wen. Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons, 1999.
[43] Tsai, Kao Y., et al. Admissible motions of special manipulateors. Robotics and Automation, IEEE Transactions on, 1994, 10.3: 386-391.
[44] VP-G Series General Information About Robot, from
https://www.densorobotics.com/download/dm/20
[45] Bonitz, Robert G.; Hsia, Tien C. Internal force-based impedance control for cooperating manipulators. Robotics and Automation, IEEE Transactions on, 1996, 12.1: 78-89.
[46] Chen, Shoupu; Harwin, William; Rahman, Tariq. The application of discrete-time adaptive impedance control to rehabilitation robot manipulators. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. IEEE, 1994.
[47] Sugeno, Michio. An introductory survey of fuzzy control. Information sciences, 1985, 36.1: 59-83.
[48] Yager, Ronald R.; Filev, Dimitar P. Essentials of fuzzy modeling and control. New York, 1994.
[49] Daugherity, Walter C.; Rathakrishnan, Balaji; Yen, John. Performance evaluation of a self-tuning fuzzy controller. In: Fuzzy Systems, 1992., IEEE International Conference on. IEEE, 1992.
[50] Sobel, Kennethm; Kaufman, Howard. Direct model reference adaptive control for a class of MIMO systems. Control and dynamic systems: Decentralized/distributed control and dynamic systems. Part 3(A 87-24850 09-63). Orlando, FL, Academic Press, Inc., 1986,, 1986, 245-314.
[51] IFS-67M25A50-I40-ANA and IFS-PCI-2148Q Information, from https://www.nitta.co.jp/product/sensor/end_of_production_and_support/after_support/

無法下載圖示 全文公開日期 2021/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE