簡易檢索 / 詳目顯示

研究生: 李淙賢
TSUNG-HSIEN LEE
論文名稱: 直立式爐管之晶圓裝載區域的流場模擬分析
Flow-Field Simulation of the Wafer Loading Area in a Vertical Furnace
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
郭鴻森
Hong-Sen Kou
李基禎
Ji-Jen Lee
林其禹
Chyi-Yeu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 228
中文關鍵詞: 計算流體力學無塵室爐管氣流夾層粒子
外文關鍵詞: CFD, cleanroom, furnace, particle
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以半導體製程設備中之微環境為主要研究方向,深入探討晶
    圓廠中主要生產設備--直立式爐管之晶舟與晶圓裝載區域,著重於裝
    載區域內部流場與污染粒子分佈的探討,期望能在設計無塵室之微環
    境時,藉助電腦的運算能力來節省所需耗費的財力、物力及人力等有
    效資源。研究內容包含:內部流場分析、氣流夾層設計、過濾網滲透
    率選配以及塵埃粒子的沉積改善,利用有限體積法的軟體FLUENT
    來計算其結果,模擬之結果供分析與改良設計。本文首先分析原始設
    計內部流場之均勻度與粒子滯留情形,針對氣流夾層區域加設開口擋
    板,及調配過濾網之滲透率兩種方法做為改善,並與原始設計模擬相
    比較兩者差異及改善後之分析結果;最後整合開口擋板與滲透率之優
    點加以搭配,提出新的改善方案並建立新的數值模型,對此整合設計
    求其數值解及流場分析,得到改善後的速度場與塵埃粒子的分佈現
    象。由模擬的結果可得知,整合設計之流場均勻度較原始設計提高
    61%,為了使潔淨度提高及污染微粒排除迅速,微環境內部氣流分佈
    必須均勻、且無迴流,才得以達到最佳效能,而其結論可提供關於無
    塵室設備之微環境的建造及改良作參考,並評估改善後之成效。


    The goal of this numerical investigation is to study the loading area of wafer boat in a vertical furnace, which is the major production equipment in the semiconductor factory. Main focus is set on exploring the detailed distributions of flow field and pollutant particle inside the loading area for serving as a design reference in upgrading the cleanness quality of this minienvironment. First of all, with the aids of the commercial CFD code FLUENT, an in-depth numerical simulation is performed and analyzed on the flow field of the original furnace design. Then, the deficiencies on flow patterns are summarized based on the calculated outcomes. Later, several amendments are proposed to eliminate those reversed flows, circulations, and non-uniform velocity distributions. These modifications include varying the porous ratio of HEPA filters and installing the blocking boards with/without opening holes inside the utility air chamber. Additionally, a parametric study on the geometrical variables of these alternatives is executed for attaining the appropriate parameter combination for an effective improvement design. In conclusion, the numerical calculation indicates that this new design upgrades the uniform level of velocity distribution from the original 28.3 % to 89.3%. Besides, the reversed flow, circulation, and pollutant deposition are successfully eliminated and expelled from the loading area of vertical furnace.

    中文摘要..............................................................................................…...Ⅰ 英文摘要..................................................................................................…II 誌謝........................................................................................................ …III 目錄............................................................................................................ IV 圖索引..................................................................................................... VIII 表索引…………………………………………………………..……... XIV 符號索引.................................................................................................. XV 第一章 緒論................................................................................................ 1 1.1 前言............................................................................................... 1 1.2 文獻回顧....................................................................................... 3 1.2.1 無塵室之流場分析................................................................ 3 1.2.2 無塵室之氣流夾層設計........................................................ 7 1.2.3 無塵室之開口板配置...........................................................10 1.2.4 塵埃粒子之沉積改善.......................................................... 12 1.3 研究動機……………………………………………….….……15 1.4 本文架構………………………………………………..………21 第二章 無塵室與爐管簡介……………………………………..….……24 2.1 無塵室之定義與規範…………………...……………..….……24 2.2 無塵室分類………………........................…………….….……29 2.3 無塵室空氣過濾系統…........................……………….….……37 2.4 爐管……………….........................…………………….………46 第三章 物理模式…......................................…………………….………61 3.1 物理模型介紹......................................………………….……...62 3.2 數值模型建構.....................................…….…………….……...75 3.3 數值邊界設定....................................…….……………..……...78 3.4 網格規劃....................................…….……………..…………...83 第四章 數值分析.............................................…….……………..……...85 4.1 統御方程式與紊流模式..............................…….……………...86 4.2 粒子運動方程式.............................…….………….…………...90 4.3 數值計算方法...........................…….………….……………….93 4.3.1 對流-擴散方程式的差分方式….………….…………….93 4.3.2 壓力-速度耦合關係的處理….………….……………….97 4.4 多孔介質條件分析….………….…………………………..…102 4.4.1多孔介質的動量方程………….…………………...…..…102 4.4.2 多孔介質的Darcy定律……….…………………...…..…103 4.4.3多孔介質的內部損失……….……………………...…..…104 4.5 排氣扇與多孔跳躍邊界條件….……………………...………104 第五章 原始設計之流場模擬分析….……………………...…….……107 5.1 爐管裝載區的整體流場趨勢…………………...…….………109 5.2 進氣氣流夾層之區域…………………………...…….………115 5.3 過濾網與晶圓間之區域…………………………...…….……121 5.4 晶圓層組間之區域………………………...…….……………123 5.5 晶圓與回風入口間區域……………...…….…………………128 5.6 氣流均勻度分析探討……………...…….……………………131 第六章 加裝開口擋板的改良設計…………………………….………134 6.1 氣流夾層中裝設擋板……...…….……………………………135 6.2 氣流夾層中裝設開口板…...…….……………………………137 6.3 裝設方形開口板之細部流場分析….…………………...……143 6.3.1 進氣氣流夾層間….…………………...……………….…143 6.3.2 過濾網與晶圓間…….…......…………………….…….…147 6.3.3 晶圓層組間……………………………...……….…….…153 6.3.4 晶圓層組與回風入口間…………………...……….….…154 6.3.5 氣流均勻度分析……………...……….……………….…159 第七章 搭配不同滲透率之過濾網的改良設計……….………………163 7.1 過濾網搭配不同滲透率設計…….………………...…………163 7.2 進氣氣流夾層間之流場………….………………...…………166 7.3 過濾網與晶圓間之流場………….………………...…………172 7.4 晶圓層組間之流場…….………………..................…… ……176 7.5 晶圓層組與回風入口間之流場……............................... ……180 7.6 變更過濾網滲透率後之氣流均勻度分析........................……183 7.7 過濾網搭配不同滲透率與擋板設計................................……185 第八章 加裝方形開口板與變更過濾網滲透率的改良設計.......…..…191 8.1 進氣氣流夾層間之流場....................................................……196 8.2 過濾網與晶圓間之流場....................................................……199 8.3 晶圓層組間之流場............................................................……202 8.4 晶圓層組與回風入口間之流場................................................207 8.5 加裝方形開口板與變更過濾網滲透率後氣流均勻度分析....208 第九章 結論與建議........................................................................……213 9.1 結論...................................................................................……213 9.2 建議.........................................……………………………...…218 參考文獻.....................…………………………………...…………...…221 作者簡介........…………………………………...……………….…...…228

    [1] Whyte, W., “Cleanroom Design”, Second Edition, John Wiley &
    Sons Ltd, Chichester, October 1999.
    [2] Murakami, S., Kato, S., and Suyama, Y., “Numerical Study on
    Diffusion of Fields as Affected by Arrangement of Supply and
    Exhaust Openings in Conventional Flow Type Cleanroom”, ASHRAE
    Transactions, Vol. 96, No. 2, pp. 343-355, 1989.
    [3] Marvell, G., “Minienvironment Air Flow Dynamics”, Solid State
    Technology, Vol. 36, pp. 47-48, 1993.
    [4] Abuzeid, S., “Comparing Various Types of Minienvironments”,
    IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.
    22-25, 1994.
    [5] Chung, Kee-Chiang and Hsu, Shou-Ping, “Effect of Ventilation
    Pattern on Room Air and Contaminant Distribution”, Building and
    Environment, Vol. 39, pp. 989-998, 2001.
    [6] 陳石法,“矩形空間中移動物體之動態流場與熱傳特性研究”,國
    立交通大學機械工程學系碩士論文,2001年。
    [7] 陳銘恩,“迷你環境潔淨室內空氣流場及微粒濃度控制分析”,國
    立交通大學碩士論文,2001年。
    [8] 江文琪,潔淨室面板儲存區之動態流場分析,國立台灣科技大學機
    械工程系研究所碩士學位論文,2005年。
    [9] 詹勝雄,矩形空間內移動LCD面板受垂直噴氣之動態流場研究,國
    立台灣科技大學機械工程系研究所碩士學位論文,2006年。
    [10] 許文獻,“空調區間之室內污染物移除分析”,元智大學機械工程
    研究所碩士論文,1999年。
    [11] Hu, S. C., Chuah, Y. K. and Yen, M. C., “Design and Evaluation of a
    Minienvironment for Semiconductor Manufacture Processes”,
    Building and Environment, Vol. 37, pp. 201-208, 2002.
    [12] 江秉芳,“在回風室安裝薄板的潔淨室內流場均勻度之影響”,大
    同大學機械工程研究所碩士論文,2003年。
    [13] 劉啟熾,“TFT-LCD 廠製程排氣系統之研究”,國立臺灣交通大
    學碩士論文,2003 年。
    [14] 馮天駿,面板儲存櫃之氣流夾層設計與參數化分析,國立台灣科
    技大學機械工程系研究所碩士學位論文,2006年。
    [15] Cheng, M., Liu, G. R., Lam, K. Y., Cai, W. J., and Lee, E. L.,
    “Approaches for Improving Airflow Uniformity in Unidirectional
    Flow Cleanrooms”, Building and Environment, Vol. 34, Issue 3, pp.
    275-284, 1998.
    [16] Chen, C. W., “The Influence of Floor’s Porosity and Height on
    Airflow Distribution in Cleanroom”, Master Thesis, Department of
    Mechanical Engineering, Tatung University, June 2001.
    [17] 陳鈺桓,LCD玻璃基板乾燥箱之流場數值模擬,國立台灣科技大
    學機械工程系研究所碩士學位論文,2005年。
    [18] 張堯閔,非接觸式大型玻璃搬送系統之設計與分析,國立台灣科
    技大學機械工程系研究所碩士學位論文,2005年。
    [19] 蔡俊宏,“潔淨室的氣流特性與潔淨度控制”,中國冷凍空調雜
    誌,pp.78-88,1999年。
    [20] 蔡俊宏,“潔淨室中潔淨度控制的實例探討”,中國冷凍空調雜
    誌,pp. 73-81,1999年。
    [21] Kobayashi, Y., Kobayashi, K., Kato, Tokunaga K., and Minami, T.,
    “Particle Characteristics of 300mm Minienvironment (FOUP and
    LPU),” IEEE Transactions on Semiconductor Manufacturing, Vol.
    13, No. 3, pp.259-263, 2000.
    [22] 顏志銘,“超潔淨無塵室流場分析與改善之研究”,國立台北科技
    大學碩士論文,2000年。
    [23] 蕭宗容,“ 300㎜晶圓載卸模組FOUP/LPU之氣流及污染物粒子特
    性研究”,國立台北科技大學冷凍空調工程系碩士論文,2002年。
    [24] 陳進忠,TFT-LCD面板乾燥設備之暫態流場數值模擬分析,國立
    台灣科技大學機械工程系研究所碩士學位論文,2007年。
    [25] http://www.eettaiwan.com/
    [26] http://www.semi.org/ch/index.htm
    [27] Michael Quirk, Julian Serda,“Semiconductor Manufacturing
    Technology”,Prentice Hall, pp. 9-285, 2001.
    [28] 顏登通,“潔淨室設計與管理”,全華科技圖書股份有限公司,1995
    年。
    [29] 漢唐集成股份有限公司。
    [30] Murakami, S., Kato, S., Nagano, S., and Tanaka, Y., “Diffusion
    Characteristics of Airborne Particles with Gravitational Settling in a
    Convection-Dominant Indoor Flow Field”, ASHRAE Transactions:
    Research, pp. 82-97, 1992.
    [31] Murakami, S., Kato, S., and Suyama, Y., “Numerical and
    Experimental Study on Turbulent Diffusion Fields in Conventional
    Flow Type Clean Rooms”, ASHARE Transactions, Vol. 95, No. 2,
    pp. 469-493, 1988.
    [32] Kuehn, T. H. and Thomas, H., “Computer Simulation of Airflow and
    Particle Transport in Cleanrooms”, Journal Environmental Sciences,
    Vol. 31, No. 5, pp. 21-27, 1988.
    [33] Kuehn, T. H., Marple, V. A., Han, H., and Liu, D., “Comparison of
    Measured and Predicted Airflow Patterns in a Clean Room”,
    Proceedings-Institute of Environmental Sciences, Vol. 98, No. 2, pp.
    331-336, 1988.
    [34] http://www.biocozy.com.tw/clean.htm
    [35] http://www.solomon.com.tw
    [36]曹芳海,風機—濾網機組(FFU)之測試分析,送風機—濾網機組
    (FFU)技術研討會,經濟部能源委員會,1998年。
    [37]亞翔公司。
    [38] http://www.mwgroup.net
    [39]李裕鉅、洪子起(摘譯),薄膜量測技術,真空科技,十
    二卷一期,1990年。
    [40] http://www.tel.com/
    [41] http://www.hitachi-kokusai.co.jp/global/index.html
    [42] http://www.asm.com/
    [43] http://www.aviza.com/default.asp
    [44] http://www.sematech.org
    [45] http://www.taiwandaikin.com/tier/front/bin/home.phtml
    [46] http://www.s-sn.com.tw/tw/product3_1.html
    [47] http://www.umc.com/chinese/class_300/index.asp
    [48] http://www.robotmatrix.org/RobotApplicationByIndustrial.htm
    [49] http://lilliangz.big5.made-in-china.com
    [50] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical
    Models of Turbulence”, Academic Press, London, England, 1972.
    [51] Morsi, S. A. and Alexander, A. J. “An Investigation of Particle
    Trajectories in Two-Phase Flow Systems”, J. Fluid Mech, Vol. 2, pp.
    193-208, January 1998.
    [52] Haider, A. and Levenspiel, O., “Drag Coefficient and Terminal
    Velocity of Spherical and Nonspherical Particles”, Power
    Technology, Vol. 58, pp. 63-70, 1989.
    [53] Li, A. and Ahmadi, G., “Dispersion and Deposition of Spherical
    Particles from Point Sources in a Turbulent Channel Flow”, Aerosol
    Science and Technology, Vol. 16, pp. 209-266, 1992.
    [54] Saffman, P. G., “The Lift on a Small Sphere in a Slow Shear Flow”,
    J. Fluid Mech., Vol. 22, pp. 385-100, 1965.
    [55] Van Doormal, J. P., and Rairhby, G. D., “Enhancements of the
    SIMPLE Method for Predicting Incompressible Fluid Flows”,
    Numer. Heat Transfer, Vol. 7, pp. 147-163, 1984.
    [56] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for
    Heat Mass and Momentum Transfer in Three-Dimensional Parabolic
    Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp.
    1787-1806, 1972.
    [57] Fluent 6.1 User’s Guide, Fluent Inc. 2004.

    無法下載圖示 全文公開日期 2015/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE