研究生: |
曾品勳 Pin-Hsun Tseng |
---|---|
論文名稱: |
結合拉曼光譜與機器學習方法加速鋰離子電池電解液之開發 Raman Spectroscopy Combined with Machine Learning Methods to Accelerate on Developing Electrolyte in Lithium-ion Battery |
指導教授: |
黃炳照
Bing-Joe Hwang 蘇威年 Wei-Nien Su 吳溪煌 She-Huang Wu |
口試委員: |
黃炳照
Bing-Joe Hwang 蘇威年 Wei-Nien Su 吳溪煌 She-Huang Wu 楊延齡 Yan-Ling Yang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 鋰離子電池 、機器學習 、離子導電度 、拉曼光譜 、卷積神經網路 、累積式學習 、二維拉曼影像 、領域自適應 |
外文關鍵詞: | Li-ion battery, machine learning, Raman spectroscopy, ionic conductivity, convolutional neural network, cumulative learning, 2D Raman image, domain adaptation |
相關次數: | 點閱:596 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] G. N. Lewis and F. G. Keyes, "THE POTENTIAL OF THE LITHIUM ELECTRODE," J. Am. Chem. Soc., vol. 35, no. 4, pp. 340-344, 1913.
[2] M. S. WHITTINGHAM, "Electrical Energy Storage and Intercalation Chemistry," Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
[3] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, no. 6, pp. 783-789, 1980.
[4] 瑞鼎電子. "鋰電池參數,圓柱形鋰離子電池型號大全." https://www.rydbatt.com/industry/10264.html (accessed 0503, 2021).
[5] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術. 五南文化, 2010. 初版.
[6] N. Mozhzhukhina, E. Flores, R. Lundström, V. Nyström, P. G. Kitz, K. Edstrom, and E. J. Berg, "Direct Operando Observation of Double Layer Charging and Early SEI Formation in Li-Ion Battery Electrolytes," J. Phys. Chem. Lett., vol. 11, no. 10, pp. 4119-4123, 2020.
[7] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., vol. 26, no. 2, pp. 163-166, 1974.
[8] A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Characterizing carbon nanotube samples with resonance Raman scattering," New Journal of Physics, vol. 5, p. 139, 2003.
[9] R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, vol. 318, no. 1-3, pp. 131-136, 2000.
[10] 劉奕酉. "八張圖,一次搞懂人工智慧的現在、未來,及對你工作的影響." https://futurecity.cw.com.tw/article/743 (accessed 05, 2021).
[11] M. Shivanandhan. "Machine Learning For Managers — What You Need To Know." https://medium.com/manishmshiva/machine-learning-for-managers-what-you-need-to-know-8cb9cf95c05b (accessed 0508, 2021).
[12] C. C. and V. V., "Support-Vector Networks," vol. 20, pp. 273-297, 1995.
[13] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: Association for Computing Machinery, 2016, pp. 785–794.
[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105, 2012.
[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.
[16] T. a. s. Mikolov, M. Karafi´at, L. a. s. Burget, J. H. ˇCernock´y, and S. Khudanpur, "Recurrent neural network based language model," INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 2010.
[17] 一個處女座的程序猿. "Competition——ML/DL:機器學習、深度學習各種計算機視覺、自然語言處理、科學預測等等比賽競賽簡介." https://blog.csdn.net/qq_41185868/article/details/82222541 (accessed 0508, 2021).
[18] S. Joglekar. "Overfitting and Human Behavior." https://medium.com/@srjoglekar246/overfitting-and-human-behavior-5186df1e7d19 (accessed 0510, 2021).
[19] Y. Nikodimos, M. C. Tsai, L. H. Abrha, H. H. Weldeyohannis, S. F. Chiu, H. K. Bezabh, K. N. Shitaw, F. W. Fenta, S. H. Wu, W. N. Su, C. C. Yang, and B. J. Hwang, "Al–Sc dual-doped LiGe2(PO4)3 – a NASICON-type solid electrolyte with improved ionic conductivity," Journal of Materials Chemistry A, vol. 8, no. 22, pp. 11302-11313, 2020, doi: 10.1039/d0ta00517g.
[20] E. Paquet and H. L. Viktor, "Computational Methods for Ab Initio Molecular Dynamics," Advances in Chemistry, vol. 2018, pp. 1-14, 2018, doi: 10.1155/2018/9839641.
[21] R. Yang, R. Xiong, S. Ma, and X. Lin, "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, vol. 260, 2020, doi: 10.1016/j.apenergy.2019.114253.
[22] Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, and Z. Chen, "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, vol. 131, 2020, doi: 10.1016/j.rser.2020.110015.
[23] M. F. Ng, J. Zhao, Q. Yan, G. J. Conduit, and Z. W. Seh, "Predicting the state of charge and health of batteries using data-driven machine learning," Nature Machine Intelligence, vol. 2, no. 3, pp. 161-170, 2020, doi: 10.1038/s42256-020-0156-7.
[24] K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, S. J. Harris, W. C. Chueh, and R. D. Braatz, "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, vol. 4, no. 5, pp. 383-391, 2019, doi: 10.1038/s41560-019-0356-8.
[25] Y. Li, K. Liu, A. M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, and H. E. Hoster, "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, vol. 113, 2019, doi: 10.1016/j.rser.2019.109254.
[26] W. Li, J. Zhu, Y. Xia, M. B. Gorji, and T. Wierzbicki, "Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles," Joule, vol. 3, no. 11, pp. 2703-2715, 2019, doi: 10.1016/j.joule.2019.07.026.
[27] Y. Li, C. Zou, M. Berecibar, E. Nanini-Maury, J. C. W. Chan, P. van den Bossche, J. Van Mierlo, and Noshin Omar, "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, vol. 232, pp. 197-210, 2018, doi: 10.1016/j.apenergy.2018.09.182.
[28] Z. Chen, R. Xiong, J. Lu, and X. Li, "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, vol. 213, pp. 375-383, 2018, doi: 10.1016/j.apenergy.2018.01.068.
[29] E. R. Logan, E. M. Tonita, K. L. Gering, L. Ma, M. K. G. Bauer, J. Li, L. Y. Beaulieu, and J. R. Dahn, "A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes," Journal of The Electrochemical Society, vol. 165, no. 3, pp. A705-A716, 2018, doi: 10.1149/2.0981803jes.
[30] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, "A review of conduction phenomena in Li-ion batteries," Journal of Power Sources, vol. 195, no. 24, pp. 7904-7929, 2010, doi: 10.1016/j.jpowsour.2010.06.060.
[31] K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher, H. Moriwake, and I. Tanaka, "Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms," Advanced Energy Materials, vol. 3, no. 8, pp. 980-985, 2013, doi: 10.1002/aenm.201300060.
[32] Y. Wang, T. Xie, A. France-Lanord, A. Berkley, Je. A. Johnson, Y. Shao-Horn, and J. C. Grossman, "Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics," Chemistry of Materials, vol. 32, no. 10, pp. 4144-4151, 2020, doi: 10.1021/acs.chemmater.9b04830.
[33] B. K. Wheatle, E. F. Fuentes, N. A. Lynd, and V. Ganesan, "Design of Polymer Blend Electrolytes through a Machine Learning Approach," Macromolecules, vol. 53, no. 21, pp. 9449-9459, 2020, doi: 10.1021/acs.macromol.0c01547.
[34] A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, and E. J. Reed, "Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials," Energy & Environmental Science, vol. 10, no. 1, pp. 306-320, 2017, doi: 10.1039/c6ee02697d.
[35] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, and G. Ceder, "Design principles for solid-state lithium superionic conductors," Nat. Mater., vol. 14, pp. 1026-1031, 2015.
[36] R. A. Huggins, "Solid Electrolytes," in Advanced Batteries: Springer, Boston, MA, 2009, pp. 339-373.
[37] M. Avdeev, V. B. Nalbandyan, and I. L. Shukaev, "Alkali metal cation and proton conductors: relationships between composition, crystal structure, and properties," in Solid State Electrochemistry I: Fundamentals, Materials and their Applications, V. V. Kharton Ed.: Wiley, 2009, ch. 7, pp. 227–278.
[38] S. Hull, "Superionics: crystal structures and conduction processes," Rep. Prog. Phys., vol. 67, pp. 1233–1314, 2004.
[39] R. C. Agrawal and R. K. Gupta, "Superionic solid: composite electrolyte phase – an overview," J. Mater. Sci., vol. 34, pp. 1131–1162, 1999.
[40] O. Nordness, P. Kelkar, Y. Lyu, M. Baldea, M. A. Stadtherr, and J. F. Brennecke, "Predicting thermophysical properties of dialkylimidazolium ionic liquids from sigma profiles," Journal of Molecular Liquids, vol. 334, 2021, doi: 10.1016/j.molliq.2021.116019.
[41] E. Mullins, R. Oldland, Y. A. Liu, S. Wang, S. I. Sandler, C. C. Chen, M. Zwolak, and K. C. Seavey, "Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods," 45, no. 12, pp. 4389-4415, 2006.
[42] X. Wang, X. Lu, Q. Zhou, Y. Zhao, X. Li, and S. Zhang, "Database and new models based on a group contribution method to predict the refractive index of ionic liquids," Phys Chem Chem Phys, vol. 19, no. 30, pp. 19967-19974, Aug 2 2017, doi: 10.1039/c7cp03214e.
[43] Y. Ding, M. Chen, C. Guo, P. Zhang, and J. Wang, "Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties," Journal of Molecular Liquids, vol. 326, 2021, doi: 10.1016/j.molliq.2020.115212.
[44] R. Gomez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernandez-Lobato, B. Sanchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules," ACS Cent Sci, vol. 4, no. 2, pp. 268-276, Feb 28 2018, doi: 10.1021/acscentsci.7b00572.
[45] S. T. Ishikawa and V. C. Gulick, "An automated mineral classifier using Raman spectra," Computers & Geosciences, vol. 54, pp. 259-268, 2013, doi: 10.1016/j.cageo.2013.01.011.
[46] C. Carey, T. Boucher, S. Mahadevan, P. Bartholomew, and M. D. Dyar, "Machine learning tools formineral recognition and classification from Raman spectroscopy," Journal of Raman Spectroscopy, vol. 46, no. 10, pp. 894-903, 2015, doi: 10.1002/jrs.4757.
[47] J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, "Convolutional neural networks for vibrational spectroscopic data analysis," Anal Chim Acta, vol. 954, pp. 22-31, Feb 15 2017, doi: 10.1016/j.aca.2016.12.010.
[48] S. Malek, F. Melgani, and Y. Bazi, "One-dimensional convolutional neural networks for spectroscopic signal regression," Journal of Chemometrics, vol. 32, no. 5, 2018, doi: 10.1002/cem.2977.
[49] J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, and S. J. Gibson, "Deep convolutional neural networks for Raman spectrum recognition: a unified solution," Analyst, vol. 142, no. 21, pp. 4067-4074, Oct 23 2017, doi: 10.1039/c7an01371j.
[50] Y. Xie, L. Yang, X. Sun, D. Wu, Q. Chen, Y. Zeng, and G. Liu, "An auto-adaptive background subtraction method for Raman spectra," Spectrochim Acta A Mol Biomol Spectrosc, vol. 161, pp. 58-63, May 15 2016, doi: 10.1016/j.saa.2016.02.016.
[51] L. Perez and J. Wang, "The Effectiveness of Data Augmentation in Image Classification using Deep Learning," arXiv:1712.04621 [cs.CV], 2017.
[52] M. Chatzidakis and G. A. Botton, "Towards calibration-invariant spectroscopy using deep learning," Sci Rep, vol. 9, no. 1, p. 2126, Feb 14 2019, doi: 10.1038/s41598-019-38482-1.
[53] K. Seddiki, P. Saudemont, F. Precioso, N. Ogrinc, M. Wisztorski, M. Salzet, I. Fournier, and A. Droit, "Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification," Nat Commun, vol. 11, no. 1, p. 5595, Nov 5 2020, doi: 10.1038/s41467-020-19354-z.
[54] R. Zhang, H. Xie, S. Cai, Y. Hu, G. K. Liu, W. Hong, and Z. Q. Tian, "Transfer‐learning‐based Raman spectra identification," Journal of Raman Spectroscopy, vol. 51, no. 1, pp. 176-186, 2019, doi: 10.1002/jrs.5750.
[55] E. J. Bjerrum, M. Glahder, and T. S. Data, "Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics," arXiv:1710.01927 [cs.LG], 2017.
[56] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning," IEEE Trans Med Imaging, vol. 35, no. 5, pp. 1285-98, May 2016, doi: 10.1109/TMI.2016.2528162.
[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," arXiv:1810.04805 [cs.CL], 2019.
[58] M. AG. "Advancements in Li-Ion Battery Research." https://www.azom.com/article.aspx?ArticleID=19013 (accessed 0510, 2021).
[59] S. Singh. "ELU as an Activation Function in Neural Networks." https://deeplearninguniversity.com/elu-as-an-activation-function-in-neural-networks/ (accessed 0515, 2021).
[60] S. Singh. "Leaky ReLU as an Activation Function in Neural Networks." https://deeplearninguniversity.com/leaky-relu-as-an-activation-function-in-neural-networks/ (accessed 0515, 2021).
[61] D. Battini. "Implementing Drop Out Regularization in Neural Networks." https://www.tech-quantum.com/implementing-drop-out-regularization-in-neural-networks/ (accessed 0521, 2021).
[62] D. P. Kingma and J. L. Ba, "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION," arXiv: 1412.6980 [cs.LG], 2015.
[63] B. K., G. J., R. R., and S. U., "When Is “Nearest Neighbor” Meaningful?," in Database Theory — ICDT’99, vol. 1540: Springer, Berlin, Heidelberg, 1999, pp. 217-235.