簡易檢索 / 詳目顯示

研究生: 張宏嘉
Hung-Chia Chang
論文名稱: 寬廣輸入電壓範圍功因校正電路的研究
Research on Power-Factor-Correction Circuit with a Wide Range Input Voltage
指導教授: 劉添華
Tian-Hua Liu
口試委員: 黃仲欽
Chung-Chien Huang
陳一通
Yie-Tone Chen
楊勝明
Sheng-Ming Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 120
中文關鍵詞: 功因校正雙開關降/升壓型轉換器寬廣輸入電壓範圍數位信號處理器
外文關鍵詞: power factor correction, two switch buck/boost converter, wide range voltage variation, digital signal processor.
相關次數: 點閱:403下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討寬廣輸入電壓範圍的功因校正全數位化轉換器電路,文中提出一降壓型轉換器與升壓型轉換器串接而成的雙開關降/升壓型轉換器。其操作模式可於輸入電壓半週期內,依不同的電壓準位操作於升壓模式或降壓模式,使得輸入電壓範圍可以在寬廣範圍變動,並使輸入電流為正弦波且功率因數接近一。
    本論文以數位信號理器TMS320LF2407達成所需的控制,並以IsSpice模擬軟體來進行電腦模擬以輔助相關的設計。實測結果與模擬結果相當接近,說明本論文所提方法的正確性與可行性。


    This thesis proposes a full digital power factor correction converter for a wide range variation of input voltage. A buck converter is connected with a boost converter to achieve the two-switch boost/buck converter. The boost/buck converter can be automatically operated as a buck mode or a boost mode within a half cycle according to the input voltage. The input current is forced to have the same phase angle and waveform with the input voltage although the input voltage varies in a wide range. As a result, the power factor is near unity.
    A digital signal processor ,TMS320LF2407 , is used as a controller in this thesis. In addition, the IsSpice software is used to simulate the waveforms. Experimental results validate the simulated waveforms. As a result, the results can show the correctness and feasibility of this thesis.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 簡介 1 1.2 文獻回顧 2 1.3 大綱 4 第二章 功因校正原理 5 2.1 簡介 5 2.2 功率因數的定義 5 2.3 功因校正的方法 10 2.4 主動式功因校正電路 12 2.4.1 不連續電流控制法 13 2.4.2 連續電流控制法 14 第三章雙開關降/升壓型功因校正轉換器模式建立 21 3.1 簡介 21 3.2 雙開關降/升壓型轉換器工作原理 23 3.2.1 升壓模式 23 3.2.2 降壓模式 26 3.3 雙開關降/升壓轉換器模式建立 33 第四章 功因校正控制迴路模式建立 48 4.1簡介 48 4.2多迴路功因校正原理 48 4.3電壓迴路模式建立 51 4.4電流迴路模式建立 55 第五章 硬體電路的設計與研製 58 5.1簡介 58 5.2 功率級電路設計 61 5.2.1 儲能電感的設計 62 5.2.2 功率開關與功率二極體的選擇 65 5.2.3 輸出電容的選擇 67 5.2.4 檢知電路的設計 68 5.4 保護電路與驅動電路 72 5.4.1 保護電路 72 5.4.2 驅動電路 73 5.5數位訊號處理器架構 77 5.6 數位信號處理器軟體程式設計 81 5.6.1 數位控制器設計方法 81 5.6.2 軟體程式設計 83 第六章 模擬與實測 87 6.1簡介 87 6.2模擬與實測結果 87 第七章 結論與建議 115 參考文獻 116 作者簡介 120

    [1] J. C. Crebier, B. Revol, and J. P. Ferrieux, “Boost-chopper-derived PFC rectifiers: interest and reality,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 36-45, Feb. 2005.
    [2] L. H. S. C. Barreto, M. G. Sebastiao, and L. C. Freitas, “Analysis of a soft-switched PFC boost converter using analog and digital control circuits,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 221-227, Feb. 2005.
    [3] J. Qian and F. C. Lee, “Charge pump power-factor-correction technologies. I. Concept, and principle,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 121-129, Jan. 2000.
    [4] J. Zhou, Z. Lu, and Z. Lin “Novel sampling algorithm for DSP controlled 2 kW PFC converter,”IEEE Trans. Power Electron., vol. 16, no. 2, pp. 217-222, May 2001.
    [5] R. B. Ridley, “secondary LC filter analysis and design techniques for current-mode-controlled converters,”IEEE Trans. Power Electron., vol. 3, no. 4, pp. 499-507, Oct. 1988.
    [6] V. Vorperian and R. B. Ridley, “A simple scheme for unity power-factor rectification for high frequency AC buses,” IEEE Trans. Power Electron., vol. 5, no. 1, pp. 77-87, Jan. 1990.
    [7] E. Dallago, M. Passoni, and G. Sassone, “Novel current transducer in a single-phase active power factor correction system,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 529-535, May .2000
    [8] M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power factor correction techniques for high power applications overview,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 701-708, June 2005.
    [9] K. Nishimura, K. Atsuumi, and K.Tachibana, “Practical performance evaluations on an improved circuit topology of active three-phase PFC power converte,” APEC' 01, pp. 1308-1314, March 2001.
    [10] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” IEEE Proc' 98, pp. 348-353, Apr. 1998.
    [11] J. Sebastian, P. Villegas, and M. M. Hernando, “High quality flyback power factor corrector based on a two input buck post-regulator,” IEEE Proc' 97, pp. 288-294, Feb. 1997.
    [12] V. F. Pires and J. F. Silva, “Three-phase single-stage four-switch PFC buck–boost-Type Rectifier,” IEEE Trans. Ind. Electron., vol. 52 , no. 2 , pp. 444-453, Apr. 2005.
    [13] W. Deng, B. Zhang, and Z. Hu, “Analysis of a novel boundary conduction mode(BCM) and voltage control of buck capacitor in single-stage PFC circuit,” IEEE IPEMC' 04, pp. 126-131, Aug. 2004.
    [14] Y. W. Lu, Wangfeng Zhang, and Yanfei Liu, “A large signal dynamic model for single-phase AC-to-DC converters with power factor correction,” IEEE PESC' 04, pp. 1057-1063, June. 2004.
    [15] V. Grigore and J. Kyyra, “High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1241-1249, Nov. 2000.
    [16] O. Lopez and L. G. D. Vicuna, “Sliding-mode-control design of a high-power-factor buck-boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, no. 3, pp. 604-612, June 1999.
    [17] Y. Nishida, S. Motegi, and A. Maeda, “A single-phase buck-boost AC-to-DC converter with high-quality input and output waveforms,” IEEE ISIE' 95, pp. 433-438, July 1995.
    [18] K. Viswanathan, R. Oruganti, and D. Srinivasan, “Dual-mode control of cascade buck-boost PFC converter,”IEEE PESC' 04, pp. 2178-2184, June. 2004.
    [19] M. T. Zhang, Y. Jiang, and F. C. Lee, “Single-phase three-level boost power factor correction converter,” APEC' 95, pp. 434-439, Mar. 1995.
    [20] K. Matsui, I. Yamamoto, and T. Kishi, “A comparison of various buck-boost converters and their application to PFC,” IEEE IECON' 02, pp. 30-36, Nov. 2002.
    [21] J. Chen, D. Maksimovic, and R. Erickson, “A new low-stress buck-boost converter for universal input PPC applications,” IEEE APEC' 01, pp. 343-349, Mar. 2001.
    [22] Robert W. Erickson, Dragan Maksimovic, Fundamentals of Power Electronics - Second Edition
    [23] V. Leonavicius and M. Duffy, “Comparison of realization techniques for PFC inductor operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 531-541, May 2004.
    [24] C. H. Chan and M. H. Pong, “Interleaved boost power factor corrector operating in discontinuous-inductor-current mode,” IEEE Proc' 97, pp. 405-410, Aug. 1997.
    [25] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,”IEEE PESC' 90, pp. 800-807, June 2004.
    [26] M. C. Ghanem, K. A. Haddad, and G. Roy, “A new control strategy to achieve sinusoidal line current in a cascade buck-boost converter,” IEEE Trans. Ind. Electron., vol. 43, no. 3, pp. 441-449, June 1996.
    [27] B. Choi, S. S. Hong, and H. Park, “Modeling and small signal analysis of controlled on time boost power-factor-correction circuit,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 136-142, Feb. 2001.
    [28] J. Cardesin, J. Sebastian, and P. Villegas, “Average small-signal model of buck converter used as power factor preregulator,” IEEE Ind. IAS’02, pp. 2147-2151, Oct. 2002.
    [29] B. Fuld, S. Kern, and R. Ridley, “A combined buck and boost power-factor-controller for three-phase input,”IEEE PESC' 93, pp. 144-148, Sep. 1993
    [30] R. B. Ridley, B. H. Cho, and F. C. Y. Lee, “Analysis and interpretation of loop gains of multiloop-controlled switching regulators,” IEEE Trans. Power Electron., vol. 3, no. 4, pp. 489-498, Oct. 1988.
    [31] P. Cooke, “Modeling average current mode control,” IEEE APEC' 00, pp. 256-262, Feb. 2000.
    [32] R. B. Ridley, S. Kern, and B. Fuld, “Analysis and design of a wide input range power factor correction circuit for three-phase applications,”IEEE PESC' 93, pp. 299-305, Mar. 1993.

    QR CODE