簡易檢索 / 詳目顯示

研究生: 簡伯烜
Po-hsuan Chien
論文名稱: 應用於電梯之永磁式同步電動機設計及驅動系統研製
Design and Implementation of Permanent-Magnet Synchronous Motor and Drive System for Elevators
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 葉勝年
Sheng-nian Yeh
林法正
Fa-cheng Lin
劉傳聖
Chuan-sheng Liu
連國龍
Kuo-lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 永磁式同步電動機三相功因校正器交流-直流-交流
外文關鍵詞: three-phase power factor corrector, ac-dc-ac, PMSM
相關次數: 點閱:275下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要分為二部分,一為永磁式同步電動機之設計,藉由Ansoft公司出品的Maxwell 2D進行分析及設計,以軟體模擬來達到最佳化之設計,不僅減少人力及成本,亦可準確掌握電動機之性能。其二為研製交流-直流-交流功率轉換器,用於市電側及電動機負載側,使用三相全橋式全控型功因校正器來取代傳統型之二極體整流器,作為永磁式同步電動機側之能源提供,以完成驅動。在市電側方面不僅能改善電流諧波含量及提高功率因數,在負載變動時亦可穩定直流匯流排電壓;在電動機負載側之調頻直流-交流功率轉換器,旨在減少整體能源消耗,且具有正反轉控制之功能,亦完成類似電梯運作模式之曲線且具有能量回收之功能。在永磁式同步電動機側不僅達到調速控制,亦能降低電動機電流諧波含量,以減少脈動轉矩。
    文中之系統以數位信號處理器TMS320F28335作為控制核心,市電側電壓電流閉迴路控制與電動機側之轉速電流閉迴路控制皆以軟體完成,減少硬體電路元件並提高可靠度。本系統之輸入市電電壓為三相交流220V/60Hz,直流匯流排電壓穩在340V,輸出以三相永磁式同步電動機加載進行實體測試,電動機驅動負載在1300 rpm,11.3N-m的條件下,由實測結果顯示系統市電電流總諧波失真率為5.88%,電動機側之電流總諧波失真率為3.48%。


    This thesis is composed of two parts. One is concerned with the design of permanent-magnet synchronous motor (PMSM), where Maxwell 2D produced by Ansoft company is used to obtain the optimum design with cost reduction as well as the assurance of motor performance. The other is the design of ac-dc-ac power converter which uses three-phase full-controlled full-bridge type power factor corrector in place of traditional diode rectifiers to drive the designed PMSM. The proposed control strategy not only reduces harmonic current and improves power factor in the power supply, but also keeps dc-bus voltage stable under load variation. The PMSM control can rotate in both directions. The proposed variable-frequency power inverter can reduce power dissipation and provide elevator-like performance. In addition, the inverter can also reduce harmonic current and torque pulsation for PMSM in the fully adjustable speed range.
    The 32-bit digital signal processor, TMS320F28335, is adopted to implement the control functions of the system. The control of the closed-loop rectifier voltage and current as well as the inverter control of motor speed and current are realized by software to reduce circuit components, and thereby improving reliability. An experimental system is built with input voltage of three-phase 220V, 60 Hz, dc-bus voltage of 340V, and PMSM as output. Experimental results show that under 1300 rpm, 11.3N-m load condition, the total harmonic distortion of current is 5.88% on the supply side, while the total harmonic distortion of current is 3.48% on the load terminal.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目 錄 IV 符號索引 VI 圖表索引 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 2 1.3 系統架構及本文特色 3 1.4 本文大綱 4 第二章 三相永磁式同步電動機之結構與模式 6 2.1 前言 6 2.2 三相永磁式同步電動機的結構 6 2.3 磁性材料之選用 9 2.4 永磁式同步電動機數學模型之建立 13 2.5 結語 16 第三章 三相永磁式同步電動機之設計與參數量測 17 3.1 前言 17 3.2 三相永磁式同步發電機的設計 18 3.2.1 三相永磁式同步電動機之繞組接線 18 3.2.2 槽極數之選用 19 3.2.3 磁鐵比例之決定 24 3.2.4 頓轉轉矩之改善 27 3.3三相14極12槽永磁式同步電動機分析結果 28 3.3.1 磁路特性分析 28 3.3.2 反電動勢分析 34 3.3.3 永磁式同步電動機性能評估 37 3.4三相14極12槽永磁式同步電動機實測結果 41 3.4.1 反電動勢及轉子磁通鏈 的量測 42 3.4.2 交、直軸電感的量測 44 3.4.3 額定轉速加載之效率 46 3.5 結語 47 第四章 三相永磁式同步電動機之控制及系統整合 48 4.1 前言 48 4.2 數位信號處理器介面電路及規劃 48 4.3 三相永磁式同步電動機轉速及電流閉迴路控制策略 52 4.3.1三相永磁式同步電動機之轉速及電流閉迴路控制 之主程式流程規劃 55 4.3.2轉速及磁極角位置偵測程式規劃 56 4.3.3轉速及電流閉迴路控制程式規劃 60 4.3.4實測結果 62 4.4 三相市電側之交流-直流功率轉換器之控制 67 4.4.1 三相交流-直流雙向功率轉換器之控制策略 67 4.4.2 三相交流-直流雙向功率轉換器程式規劃 72 4.5 系統整合及程式規劃 74 4.6 系統整合的實測 77 4.7 結語 89 第五章 結論及未來研究方向 90 5.1結論 90 5.2未來研究方向 91 參考文獻 92 附錄A 14極12槽三相永磁式同步電動機的繞組接線 96 作者簡介 98

    參考文獻
    [1] D. G. Dorrell, “Design requirements for brushless permanent magnet generators for use in small renewable energy systems,” 33rd Annual Conference of the IEEE Industrial Electronics Society, pp.216-221, 2007.
    [2] J. Rizk and M. Nagrial, “Design of permanent-magnet generators for wind turbines,” IEEE Power Electronics and Motion Control Conference, vol. 1, no. 2, pp. 208-212, 2000.
    [3] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part I: open-circuit Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.124 - 135, 1993.
    [4] Z. Q. Zhu, and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part II: armature-reaction field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.136 - 142, 1993.
    [5] Z. Q. Zhu, and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part III: effect of stator slotting,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.143 - 151, 1993.
    [6] Z. Q. Zhu, and D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless dc motors, part IV: magnetic field on load,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.152 - 158, 1993.
    [7] U. Kim, and D. K. Lieu, “Magnetic field calculation in permanent magnet motors with rotor eccentricity: with slotting effect considered,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp.2253-2266, 1998.
    [8] U. Kim, and D. K. Lieu, “Magnetic field calculation in permanent magnet motors with rotor eccentricity: without slotting effect,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp.2243 - 2252, 1998.
    [9] P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao and R. Liu, “Optimization of the magnetic pole shape of a permanent-magnet synchronous motor,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp.2531 - 2533, 2007.
    [10] B. Štumberger, G. Štumbergera, M. Hadžiselimovića, A. Hamlera, V. Goričana, M. Jesenika and Mladen Trlepa, “Comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement,” Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp.e261 - e264, 2007.
    [11] Z. Q. Zhu, Z. P. Xia, and D. Howe, “Comparison of halbach magnetized brushless machines based on discrete magnet segments or a single ring magnet,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp.2997 - 2999, 2002.
    [12] E. Muljadi and J. Green, “Cogging torque reduction in a permanent magnet wind turbine generator,” Proceedings of the 21st American Society of mechanical engineers wind energy symposium, 2002.
    [13] Z. Q. Zhu, S. Ruangsinchaiwanich, D. Ishak, and D. Howe, “Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp.3910 - 3912, 2005.
    [14] Z. Q. Zhu, and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp.407 - 412, 2000.
    [15] Z. Q. Zhu, S. Ruangsinchaiwanich, Y.Chen and D. Howe, “Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines,” IEEE Transactions on Magnetics, vol. 42, no. 5, pp.1597 - 1603, 2006.
    [16] C. S. Koh, H. S. Yoon, K. W. Nam and H. S. Choi , “Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp.1822 - 1827, 1997.
    [17] C. S. Koh and J.-S. Seol, “New cogging-torque reduction method for brushless permanent-magnet motors,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp.3503 - 3506, 2003.
    [18] Z. Q. Zhu and D. Howe, “Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors,” IEEE Transactions on Magnetics, vol. 28, no. 2, pp.1371 - 1374, 1992.
    [19] S. A. Saied, K. Abbaszadeh, S. Hemmati and M. Fadaie, “A new approach to cogging torque reduction in surface-mounted permanent-magnet motors,” European Journal of Scientific Research, vol. 26, no. 4, pp.499-509, 2009.
    [20] M. Sakui, T. Kitamure and H. Fujita,“Harmonic analysis of a single-phase rectifier with a DC filter capacitor,"JIEE, vol. 113, no. 8, pp. 93-100,1993.
    [21] A, Cavallini, M. Loggini and G. C.Montanari,“Comparison of approximate methods for estimate harmonics injected by AC/DC converter,"IEEE Transactions on Industrial Electronics, vol. 41 , no. 2, pp. 256-262,1994.
    [22] 黃泰銘,“應用模糊邏輯控制器於三相感應伺服驅動系統之電動機效率改善研製",國立台灣科技大學電機研究所碩士論文,民國九十二年。
    [23] 李惇榮,“三相三階層雙向功率轉換器之研製",國立台灣科技大學電機研究所碩士論文,民國九十三年。
    [24] M. Tou, K. Al-Haddad, G. Olivier and V. Rajagopalan “Analysis and design of single-controlled switch three-phase rectifier with unity power factor and sinusoidal input current,” IEEE Transactions on Power Electronics, vol.12, no.4, pp.608-614, 1997.
    [25] 張嘉煙,“雙向功率轉換之永磁式同步電動機驅動器研製” ,國立臺灣科技大學電機研究所碩士論文,民國九十七年。
    [26] N. Hur, J. Jung and K. Nam, “A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system,” IEEE Transactions on Industrial Electronics, vol. 48, no.4, pp.794-803,
    [27] F. Blaschke, “The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines,” Siemens Review, vol. 34, pp.217-220, 1972.
    [28] 唐任遠,現代永磁電機理論與設計,機械工業出版社,北京, 1997.

    [29] E. Spooner, “Direct coupled, permanent magnet generators for wind turbine applications,” IEE Proceedings, Electric Power Application, vol. 143, pp. 1-8, 1996.
    [30] 林君達,“低噪音風能轉換系統用永磁式同步發電機之設計及控制,國立台灣科技大學電機研究所碩士論文",民國九十八年。
    [31] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall Inc., 2001.
    [32] D. Hanselman, Brushless permanent magnet motor design, The Writer’s Collective, USA , 2003.
    [33] A.E. Fitzgerald, C. Kingsley Jr., and S.D. Umans, Electric Machinery, 6th. Edition, McGraw-Hill, 2003.
    [34] J. W. Choi and S. K. Sul,“Fast current control controller in three-phase ac/dc boost converter using d-q axis crosscouping,"IEEE Transactions on Power Electronics, vol. 13, no. 1,pp. 562-570, 1985.
    [35] T. M. Rowan and R. J. Kerkman,“Design and experimental results of a brushless AC servo drive,"IEEE Transactions on Industry Application, vol IA-22, no. 4, 1986.
    [36] http://www.csc.com.tw/index.asp,中國鋼鐵公司。
    [37] 劉建村,“六相永磁式同步電動機設計及故障後控制策略,國立台灣科技大學電機研究所碩士論文",民國九十九年。
    [38] 蕭鈞毓,“六相及雙三相繞組永磁式同步電機之分析及設計,國立台灣科技大學電機研究所碩士",民國九十六年。

    QR CODE